

Delineamento em blocos ao acaso (DBC)

Universidade Estadual de Santa Cruz

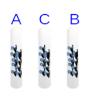
Ivan Bezerra Allaman

INTRODUÇÃO

- É utilizado quando se tem alguma condição experimental (física ou biológica) heterogênea o suficiente para interferir nas inferências dos tratamentos a serem testados.
- · Os blocos deverão ser tão uniformes quanto possível e espera-se que haja uma diferença entre os blocos.
- · Cada bloco deve incluir necessariamente todos os tratamentos que estão sendo estudados.
- · Uma vez constituídos os blocos, os tratamentos são atribuídos aleatoriamente as unidades experimentais.
- Um erro comum de alguns pesquisadores é delinear o experimento como em blocos ao acaso e ao fazer a ANOVA olhar para a significância dos blocos. Caso não haja significância dos blocos, refaz a análise como se fosse um DIC. Isto é um erro absurdo, pois a forma como distribui os tratamentos nas unidades experimentais são distintas.

DISTRIBUIÇÃO DOS TRATAMENTOS NAS PARCELAS

Suponha que estejamos interessados em estudar 3 tipos diferentes de crioprotetores (A, B e C) no congelamento de sêmen de equinos. Para que tenhamos um número de repetição razoável, teremos que ter n animais no estudo. No entanto, sabe-se que há uma variabilidade significativa entre animais no que diz respeito a qualidade seminal. Logo, é necessário um delineamento que anule o efeito de animal para que possamos fazer inferências sobre os tratamentos sem qualquer viés. Portanto, o delineamento em blocos se faz necessário. Para blocarmos o efeito de animal, teremos que aplicar todos os tratamentos em todos os animais. Isto é feito geralmente coletando o sêmen do animal e repartindo-o em alíquotas nos quais receberão os tratamentos. Confira no esquema abaixo.



ANÁLISE DE VARIÂNCIA

Modelo estatístico

· Iremos incluir o fator "blocos" no modelo estatístico.

$$y_{ij} = \mu + \tau_i + \delta_j + \varepsilon_{ij}$$

em que:

- · y_{ij} = é a observação no bloco j (j=1,...,b) do tratamento i (i=1,...,k);
- $\cdot \mu$ = é a média geral associada a todas as observações;
- τ_i = é o efeito do tratamento i;
 - · tal efeito é medido como a subtração da média do tratamento i pela média geral ($\bar{x}_i \mu$).
- · δ_j = é o efeito do bloco j;
 - · tal efeito é medido como a subtração da média do bloco j pela média geral ($ar{b}_i \mu$).
- \cdot ε_{ij} = é o erro associado a observação no bloco j do tratamento i;

A tabela da ANOVA

Fontes de Variação	Graus de Liberdade	Soma de Quadrados	Quadrado Médio	F calculado
Blocos	b - 1	SQ_{blocos}	$QM_{blocos} = SQ_{blocos}/(b-1)$	$rac{QM_{blocos}}{QM_{blocos}}$
Tratamentos	k - 1	SQ_{trat}	$QM_{trat} = SQ_{trat}/(k-1)$	$\frac{QM_{trat}}{QM_{erro}}$
Erro	(k-1)(b-1)	SQ_{erro}	$QM_{erro} = SQ_{erro}/(k-1)(b-1)$	
Total	kb - 1	SQ_{total}		

· Os pressupostos são os mesmos já abordados no assunto "introdução a análise de variância".

Aplicação

1. The objective of this experiment was to determine the effect of three treatments (T1, T2 and T3) on average daily gain (g/d) of steers. Steers were weighed and assigned to treatments were randomly assigned. Therefore, a total of 12 animals were used. Data with means and sums are shown in the following table:

	Bloco I	Bloco II	Bloco III	Bloco IV
T1	826	865	795	850
T2	827	872	721	860
Т3	753	804	737	822

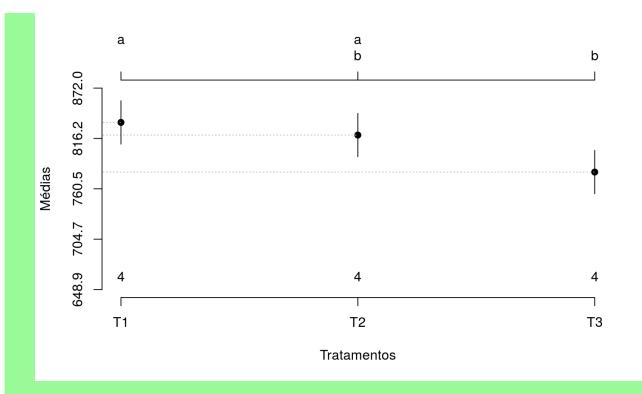
A ideia dos cálculos são os mesmos já abordados na introduação a análise de variância. Segue abaixo para comodidade do leitor.

$$egin{aligned} SQ_{blocos} &= k \cdot \sum_{j=1}^b (ar{y}_{.j} - ar{y}_{..})^2 \ &= 3 \cdot \{(802 - 811)^2 + \dots + (844 - 811)^2\} \ &= 18198 \ SQ_{trat} &= b \cdot \sum_{i=1}^k (ar{y}_{i.} - ar{y}_{..})^2 \ &= 4 \cdot \{(834 - 811)^2 + \dots + (820 - 811)^2\} \ &= 6536 \end{aligned}$$

Partindo do princípio que os pressupostos foram atendidos, segue o quadro da ANOVA.

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
Bloco	3	18198.00	6066.00	9.91	0.0097
Trat	2	6536.00	3268.00	5.34	0.0465
Residuals	6	3672.00	612.00		

Embora os softwares coloquem o p-valor para qualquer fator que não seja erro, não há sentido algum olharmos para a significância dos blocos. Portanto, considerando 5% de significância podemos afirmar que há diferenças significativas entre os tratamentos. Segue o teste de Tukey.



2. In an experiment to compare the effects of four drugs, A, B, C and a placebo, or inactive substance, D on the lymphocyte counts in mice a randomized block design with four mice from each of five litters was used, the litters being regarded as blocks. The lymphocyte counts (thousands per mm^3 of blood) were:

	Litters 1	Litters 2	Litters 3	Litters 4	Litters 5
Drugs A	7.1	6.1	6.9	5.6	6.4
Drugs B	6.7	5.1	5.9	5.1	5.8
Drugs C	7.1	5.8	6.2	5.0	6.2
Drugs D	6.7	5.4	5.7	5.2	5.3

Partindo do princípio que os pressupostos foram atendidos, segue o quadro da ANOVA.

Df Sum Sq Mean Sq F value Pr(>F)

Bloco 4 6.40 1.60 30.16 0.0000

Trat 3 1.85 0.62 11.59 0.0007

Residuals 12 0.64 0.05

Como houve diferenças significativas entre os tratamentos, segue o teste de Scott-Knott.

