Universidade Estadual de Santa Cruz - UESC Departamento de Ciências Exatas - DCEX

CET076 - Metodologia e Estatística Experimental

Curso de Agronomia Prof. José Cláudio Faria

Prova 2 - Conceitual

Pontuação: 10

Prazo: 16/10/2024 - 23/10/2024

Nome:	Matrícula:
Nome:	Matrícula:

Observaçãos para as questões:

- Seja sucinto e objetivo nas respostas.
- Para algumas questões pode não existir uma resposta única. Nesses casos, as justificavas são importantes.

1 Análise estatística de dados experimentais

Os dados e análises a seguir foram feitos a partir de um ensaio de clones de cacau montado no delineamento interiamente ao acaso em um local representativo de uma região produtora.

Tra	Repetições				Totais	N.Repetições	Médias		
	1	2	3	4	5	6			
Α	58	49	51	56	50	48	312	6	52,00
В	60	55	66	61	54	61	357	6	59,50
С	59	47	44	49	62	60	321	6	53,50
D	45	33	34	48	42	44	246	6	41,00
							1.236	24	51,50

Figura 1 – Dados considerados na análise.

ANOVA

Causa da variação	GL	SQD	QMD	Fcal
Tratamentos	3	1.071,00	357,00	10,74*
Resíduo	20	665,00	33,25	
Total	23	1.736,00		

^{*} Significativo ao nível de 5% de probabilidade.

Figura 2 – Análise de variância.

Clones	Média	Tukey	Duncan	SNK
В	59,50	а	а	а
С	53,50	a	a b	a
Α	52,00	a	b	a
D	41,00	b	С	b

Figura 3 – Testes de comparação de médias múltiplas.

ANOVA

Causa da variação	GL	SQD	QMD	F_{cal}	Pr
Tratamentos	(3)	(1.071,00)			
(A, D) vs (B, C)	1	600,00	600,00	18,05	0,0004
A vs D	1	363,00	363,00	10,92	0,0035
B vs C	1	108,00	108,00	3,25	0,0866
Resíduo	20	665,00	33,25		
Total	23	1.736,00			

Figura 4 – Análise de contrastes.

2 Perguntas de um produtor rural, leigo em estatística experimental (3.0)

- 1. Qual o significado de se dizer: significativo ao nível de 5% de probabilidade pelo teste F na ANOVA?
- 2. Se ao invés de 5% de probabilidade fosse utilizado 1 ou 10% de probabilidade, poderia haver alguma diferença nos resultados encontrados?
- 3. Em caso afirmativo, qual a conseqüência, em termos de risco caso eu acatasse os clones superiores de seu experimento, em cada caso (1 ou 10%)?
- 4. Para reduzir ao máximo a probabilidade do "erro" na tomada de decisão, não seria interessante trabalhar com valores mais baixos, por exemplo, 0,1 ou 0,01%? (Obs: o produtor não entende o relacionamento dos erros, tipo I e II, envolvidos na tomada de decisão de um teste de hipóteses. Portanto, explique de forma clara e objetiva a conseqüência da redução proposta na tomada de decisão em termos dos clones serem consideradas iguais ou diferentes).
- 5. Estou observando seu quadro de comparação de médias múltiplas e vejo que os resultados obtidos pelos diferentes métodos não são iguais! Ocorreu algum erro, ou esses testes possuem sensibilidade diferenciada para a detecção de possíveis diferenças entre médias de tratamentos?
- 6. Sendo verdade que existe sensibilidade diferenciada, quais os testes de comparação de médias múltiplas são mais sensíveis (a diferença mínima significativa, dms, é reduzida) na detecção de possíveis diferenças entre médias de tratamentos? Quais os pouco sensíveis (a diferença mínima significativa, dms, é elevada)? Quais os de sensibilidade intermediária?
- 7. Se eu desejar maior segurança na comparação entre as médias, ou seja, uma vez que o método detecta diferenças entre as médias populacionais estas são realmente diferentes, qual, entre os métodos apresentados, seria o mais recomendado? Justifique.
- 8. É possível classificar um experimento em relação à qualidade dos procedimentos adotados, ou seja, se este experimento foi bem planejado e bem conduzido? Em caso afirmativo, como seria classificado este experimento.
- 9. O clone D é o que tenho plantado. Baseado em fundamentos estatísticos, haveria algum ganho de produtividade se fossem plantados os clones C ou A? Que decisão tomar?
- 10. Para o contexto atual da cacauicultura, supondo os clones como igualmente resistentes a vassoura-de-bruxa, com fundamentos estatísticos, quais clones seriam mais recomendados para a propagação e plantio?

3 Perguntas de um estatístico experimental (4.0)

- 1. O que é quantificado na ANOVA pelo erro experimental ou resíduo? Em outras palavras, ele reflete a influência de quais fontes de variação?
- 2. No exemplo analisado o que é quantificado na ANOVA pelo efeito de tratamento? Em outras palavras, ele reflete a influência de qual fonte de variação?
- 3. Faça uma análise comparativa qualitativa entre os testes de comparação de médias múltiplas apresentados (Tukey, Duncan, etc.) em relação à análise de contrastes. Ou seja, compare os métodos em conjunto com os contrastes. De sua opinião em relação à flexibilidade (comparações possíveis de serem obtidas) e facilidade de cálculos.
- 4. Se a probabilidade apresentada no teste F da ANOVA para a fonte de variação "tratamento" fosse 0,062 (6,2%), neste caso não significativo a 5%, você ainda assim continuaria a análise estatística e realizaria um dos métodos de comparação de médias (contrastes ou testes de comparação de médias múltiplas) ou não? Justifique sua decisão. Observação: Visualize a possibilidade de um conjunto de médias de tratamentos se apresentar muito próximas entre si, e apenas uma das médias se distanciar do restante do grupo. Lembre-se que a variância devida ao efeito dos tratamentos é uma medida aproximada da dispersão média de cada tratamento em torno da média geral do experimento.
- 5. Um dos pressupostos básicos para a realização de uma ANOVA é que exista homocedasticia (invariância da variância) entre os "diferentes" tratamentos. O que isto significa?
- 6. No quadro da ANOVA onde se realizou o desdobramento dos graus de liberdade em contrastes ortogonais, qual é conclusão quando os clones comparados são B vs. C? Você recomendaria os dois indistintamente ou preferiria recomendar o B? Justifique.
- 7. O aumento do número de repetições do experimento aumentaria ou reduziria a probabilidade de acerto na tomada de decisão das hipóteses? Justifique.
- 8. Qual a seria a forma mais eficiente (e a única) de aumentarmos a confiabilidade de nossas decisões, ou seja, afirmar que existem diferenças estatísticas em relação às fontes de variação controladas quando, de fato, elas existem, e que não existem diferenças quando, também de fato, elas não existem?

4 Planejamento de experimentos (3.0)

Necessita-se avaliar três tamanhos de tubete (grande, médio e pequeno) para serem usados na produção clonal de de determinada espécie vegetal pelo Intituto Biofábrica de Cacau - IBC/Ilhéus/Bahia.

O experimento será montado no delineamento em blocos ao acaso - DBC, no interior de uma casa de vegetação equipada com irrigação automática, na qual as condições ambientais foram consideradas heterogêneas devido a um gradiente de irradiância.

Responda as questões abaixo de forma objetiva de modo a possibilitar a um técnico agrícola montar e conduzir o experimento.

- 1. Faça um desenho esquemático da área (croqui) do experimento indicando (2.0):
 - a) Como dispor os blocos de modo a isolar o efeito do gradiente de irradiância na ANOVA;
 - b) O número de repetições mínimo (baseado no critério prático e genérico) necessário para o experimento possibilitar uma inferência consistente;
 - c) O número de unidades de observação (plantas) por unidade experimental, justifique;
 - d) O sorteio das unidades experimentais na área experimental;
 - e) Detalhe os cuidados básicos que devem ser tomados para selecionar as mudas que serão usadas no experimento e no enchimento dos tubetes com o substrato.
- 2. Apresente um quadro da análise de variância (simplificado) contendo apenas (1.0):
 - a) As fontes de variação;
 - b) Os graus de liberdade (obrigatoriamente numéricos de acordo com o croqui) associados as fontes de variação;
 - c) A estatística F associada ao efeito de interesse, ou seja, indique a forma como será obtida;
 - d) Um plano de contrastes ortogonais para comparação dos tratamentos de interesse.