
Classes and Methods in the S Language

John M. Chambers

c©Bell Laboratories, Lucent Technologies August 9, 2001

This document introduces formally defined classes and methods for the S
language. It is adapted from a small part of the related material in the book
Programming with Data, [Cha98]. The adapted version describes compatible
implementations of classes and methods for S-Plus and R.

1 Defining Classes and Methods

.
Methods in S define how a particular function should behave, based on

the class of the arguments to the function. You can find yourself involved in
programming new methods for several reasons, usually arising either from
working with a new class of objects or with a new function:

1. You need to define a new class of objects to represent data that behaves
a bit differently from existing classes of objects.

2. Your application requires a new function, to do something different
from existing functions, and it makes sense for that function to behave
differently for different classes of objects.

You may also just need to revise an existing method or differentiate classes
that were treated together before. However it comes about, defining a new
method is the workhorse of programming with objects in S.

Conversely, defining a new class is less common, but often the crucial
step. Classes encapsulate how we think about the objects we deal with, what
information the objects contain, what makes them valid. You will likely write
many more methods than class definitions, particularly since each new class
definition typically generates a number of new methods. But the usefulness
of your project will depend on good design of the object classes, probably
more than anything.

1

To begin, though, we will discuss the simpler project of designing meth-
ods. Let’s take on a project to write a function that returns a “one-line”
description of an object. We could just type the name of the object, of
course, and S would show us that object. Also, the function summary, sup-
plied with S, is designed to summarize the essential information in an object,
usually in a page or so. Our project takes summary one step further, with the
goal of a one-liner.

We will name the function whatis and give it just one argument, the
object we’re interested in. One definition might be:

> whatis <- function(object) data.class(object)
> whatis(1:10); whatis(state.x91); whatis(whatis)
[1] "integer"
[1] "matrix"
[1] "function"

Okay, but not much of a programming contribution. What else might we
want to know about the object? Something about how big it is, perhaps.
We can use the S function length. So we might try, as a second attempt:

> whatis <- function(object) paste("An object of class",
+ data.class(object), "and length", length(object))

The S function paste pastes strings from all its arguments into single strings.
Let’s try this definition on a few objects:

> whatis(x1)
[1] "An object of class numeric and length 14"
> whatis(xm)
[1] "An object of class matrix and length 42"
> whatis(whatis)
[1] "An object of class function and length 2"

Well, better but not great. The idea of length is fine for numeric objects,
and generally for the vector objects (see the references [Cha98], [BCW88]).
But for a matrix we would like to know the number of rows and columns,
and for a function it may not be clear what we would like, but certainly
the length has no obvious relevance at all. Let’s go back to the simpler
definition, data.class(object), and think things over.

1.1 Defining Methods

Around now we realize that the generic purpose of the function (in this case,
to produce an informative one-line summary) needs to be implemented by

2

different methods for different kinds of objects. The class/method mecha-
nism in S provides exactly this facility. We will define methods for those
classes of objects where we can see a useful, simple summary. The existing
function still plays a role, now as the default method, to be used when none
of the explicit methods applies. For this purpose we will want to return to
a simple definition, say:

> whatis <- function(object) paste("An object of class",
+ data.class(object))

That’s a definition that will, at least, work for all objects and not give back
information that might be confusing for some objects.

For a definition of whatis for ordinary vectors of numbers, character
strings, or other kinds of data, the length is quite reasonable. This is
where virtual classes are so helpful ([Cha98]). We don’t need to implement
a method for every actual vector class, just one method for all vectors.

The method is defined by a call to the function setMethod:

setMethod("whatis",
"vector",
function(object)
paste(data.class(object), "vector of length", length(object))

)

We tell setMethod three things: what generic function is involved, what
classes of arguments the method corresponds to, and what the definition of
the method is. S uses the term signature for the second item: in general, it
matches any of the arguments of the function to the name of a class. The
definition of the method is a function; it must always have exactly the same
arguments as the generic. This is the first method defined for whatis, so S
just takes the ordinary function as defining the generic.

The vector method will do fine for those ordinary vectors, but for objects
with more complicated classes, we can do more. Consider matrices, for
example. We would like to know the number of rows and number of columns.
What else should we include in a one-line summary? Well, matrices are
examples of S structures: objects that take a vector and add some structure
to it. So we might ask whether the relevant information about the underlying
vector could be included. We decided before that the class and the length
are useful descriptions of vectors, but in this case we don’t need the length
if we know the number of rows and columns. We can include the class of
the vector, though, and this is useful since matrices can include any vector
class as data. All that information can be wrapped up in the function:

3

whatIsMatrix <- function(object)
paste(data.class(as(object, "vector")), "matrix with",

nrow(object), "rows and", ncol(object), "columns")

In order to make this the matrix method for whatis, we call the function
setMethod again.

setMethod("whatis", "matrix", whatIsMatrix)

We can call showMethods to see all the methods currently defined for a generic
1.

> showMethods("whatis")
Database object

[1,] "." "ANY"
[2,] "." "matrix"
[3,] "." "vector"

Three methods are defined, all on the working database (which happened to
appear as "." in the search list of databases). The method corresponding
to class ANY is the one used if none of the other methods matches the class
of object; in other words, the default method.

At this point, there are some observations worth noting.

• We did not define the default method. Because there was an existing
definition for the function, S assumed that definition should continue
to be used when no explicit method applied.

• The call to setMethod clearly had some side effect, since the new
method definition persisted. For nearly all applications, you don’t
want to worry about exactly what side effect; to be safe, just use tools
such as setMethod, dumpMethod and source to set, dump, and redefine
the methods.

• We remarked on the usefulness of virtual classes, not only vector, but
also structure. There are a number of virtual classes in S, and you
can define more; see section [Cha98, Section 7.1] for a discussion.

• In the matrix method, we created a special function, whatIsMatrix.
That is usually a good idea, so we can test the function before explicitly
making it a method. There are two ways to use the function: making
its current definition the method, as we did here, or writing the method

1Note on R/S-PlusCompatibility: The appearance of the output is shown for S-
Plus, and will differ somewhat in R

4

as a call to the special function. Either way is fine, but in the first case
redefining whatIsMatrix will not change the method, because it was
the value, the object, that was passed to setMethod.

If you want to edit the definition of a particular method, the function
dumpMethod will write it out to a file. In fact, dumpMethod works even if no
method has been explicitly defined for this class. For this reason, it’s the
best general way to start editing a new method:

> dumpMethod("whatis", "numeric")
Method specification written to file "whatis.numeric.S"

I asked for the method for class numeric; there is no explicit method, but
since class numeric extends class vector, that method was written out. The
file name chosen combines the name of the generic and the signature of the
method we’re looking at. The file "whatis.numeric.S" contains:

setMethod("whatis", "numeric",
function(object)
paste(data.class(object), "vector of length", length(object))
)

The setMethod call, when evaluated, will define the new method, but cur-
rently just contains the method for class "vector". After we edit the file,

source("whatis.numeric.S")

will define the method. As an exercise, you might try writing a method for
numeric objects: perhaps in addition to length, the min and max might be
interesting.

Let’s look at a few calls to whatis with the methods defined so far.

> whatis(1:10)
[1] "integer vector of length 10"
> whatis(x1)
[1] "numeric vector of length 14"
> whatis(x1 > 0)
[1] "logical vector of length 14"
> whatis(letters)
[1] "character vector of length 26"
> whatis(xm)
[1] "numeric matrix with 14 rows and 3 columns"
> whatis(paste)
[1] "An object of class function"

5

The case of a function object still falls through to the default method, be-
cause a function object is not a vector. There is nothing particularly difficult
in dealing with functions as objects, but you will need to find some tools to
help. If you’d like to try writing a whatis method for function objects, see
[Cha98, page 79] for some utilities that work in both S-Plus and R (with the
SMethods package).

1.2 Defining a New Class

Designing a class is an extremely important step in programming with data,
allowing you to mold S objects to conform to your application’s needs. The
key step is to decide what information your class should contain. What does
the data mean and how are we likely to use it? There are often different
ways to organize the same information; no single choice may be unequivocally
right, but some time pondering the consequences of the choices will be well
invested.

The mechanism for creating classes is fairly simple: you call one function,
setClass, to define the new class, and then write some associated functions
and methods to make the class useful. For many new classes, this includes
some or all of the following:

1. software to create objects from the class, such as generating functions
or methods to read objects from external files;

2. perhaps a method to validate an object from the class;

3. methods to show (print and/or plot), or to summarize the objects for
users;

4. data manipulation methods, especially methods to extract and replace
subsets;

5. methods for numeric calculations (arithmetic and other operators, math
functions) that reflect the character of the objects.

We will sketch a few of those here, using a relatively simple, but practical,
example. In [Cha98, Section 1.7], a more extended example is given.

Suppose we are tracking a variable of interest along some axis, perhaps
by a measuring device that records a value y1 at a position x1, a value y2 at
x2, and so on. The vector y is the fundamental data, but we need sometimes
to remember the positions, x, as well. This example was developed by my
colleague Scott Vander Wiel for an application with x being distance along

6

a length of fiber optic cable, and y some measurement of the cable at that
position. Clearly, though, the concept is a very general one.

How do we want to think of such data? Basically, we want to operate
on the measurements, but always carry along the relevant positions and
use them when this makes sense; for example, when plotting. What is the
natural way to implement this concept? We could represent the data as a
matrix, with two columns. This leaves the user, however, to remember when
to work with one or the other column, or both. We could represent the data
as a list with two components, but this has a similar problem.

S provides a class definition mechanism for such situations. We can de-
cide what information the class needs, and then define methods for functions
to make the class objects behave as users would expect. Users of the meth-
ods can for most purposes forget about how the class is implemented and
just work with the concept of the data.

Classes can be defined in terms of named slots containing the relevant
information. In this case, the choice of slots is pretty obvious: positions and
measurements, or x and y. The S function setClass records the definition
of a class. Its first two arguments are the name of the class and a repre-
sentation for it—pairs of slot names and the class of the corresponding slot.
The function representation constructs this argument. Let’s call the new
class track, reflecting the concept of tracking the measurement at various
positions.

setClass("track", representation(x = "numeric", y = "numeric"))

S now knows the representation of the class and can do some elementary
computations to create and print objects from the class. The operator "@"

or the function "slot" can be used to extract or set the slots of an object
from the class. The operator takes an object as its left operand and a quoted
or unquoted string, naming the slot, as its right operand. The slot name
here is unevaluated ; that is, t1@x looks for a slot named "x", rather than
evaluating an object named x. If you do need to compute the name of the
slot, that’s how the function slot works; its first argument is the object and
its second argument is the string specifying the slot, with both arguments
evaluated in the ordinary S way. When working with slots, though, you
more often will know the name explicitly, since it’s part of the definition of
the class.

To create a track object from positions pos1 and responses resp1:

> tr1 <- new("track", x = pos1, y = resp1)

7

The function new returns a new object from any non-virtual class. Its first
argument is the name of the class, all other arguments are optional and if
they are provided, S tries to interpret them as supplying the data for the
new object. In particular, as we did here, the call to new can supply data for
the slots, using the slot names as argument names.

Since S knows the representation of the class, an object can be shown
using the known names and classes of the slots. The default method for show
will do this:

> tr1
An object of class "track"

Slot "x":
[1] 156 182 211 212 218 220 246 247 251 252 254 258 261 263

Slot "y":
[1] 348 325 333 345 325 334 334 332 347 335 340 337 323 327

It’s also possible to convert objects into the new class by a call to as. For
example, a named list, xy, with elements x and y could be made into a track

object by as(xy, "track").
Most classes will come with generating functions to create objects more

conveniently than by calling new. S imposes no restrictions on these func-
tions, but for convenience they tend to have the same name as the class.
Their arguments can be anything. For track objects, a simple generator
would look much like what we did directly:

track <-
an object representing measurements ‘y’, tracked at positions ‘x’.
function(x, y)
{
x <- as(x, "numeric")
y <- as(y, "numeric")
if(length(x) != length(y))
stop("x, y should have equal length")

new("track", x = x, y = y)
}

From a user’s perspective, a major advantage of a generating function is that
the call is independent of the details of the representation.

> tr1 <- track(pos1, resp1)

8

For some classes, we also want to be able to read the objects simply from
text files, using the scan function (see [Cha98, Section 1.7] for examples).
For now we’ll assume that track objects are just generated from positions
and measurements that are already available.

Once we can create objects from the class conveniently, we want to look
at them. A method for the function show will be called when S automatically
displays the result of a computation.2 This function takes only one argument,
object, the object to be displayed. The display can be either printed (the
usual choice), or plotted. Two other functions, print and plot, can also have
methods defined for these two cases. These functions have a more general
form, but the method for a new class of objects is usually called with just one
argument. The function summary is expected to produce a short description,
ideally to fit on a single page regardless of the size of the object.

Methods for show should display the objects so that all the essential
information is visible in a simple, intuitive way. Easier said than done, in
many cases! For track objects, we want to associate corresponding values
from the x and y slots. It should be clear to users which is which, but we also
want to remind them that this is a special class, and not a list or a matrix.
You might want to stop reading at this point and think about or sketch out
some possibilities.

At any rate, here is one line of thinking. A fairly nice way to pair the
values is to make up a matrix with two rows or columns for the x, y values.
But a two-column matrix will waste all sorts of space printing, so it better
be a two-row matrix. We can get that by using the S function rbind, which
pastes its arguments together as rows of a matrix. Let’s try it:

> xy <- rbind(tr1@x, tr1@y)
> xy

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 156 182 211 212 218 220 246 247 251
[2,] 348 325 333 345 325 334 334 332 347

[,10] [,11] [,12] [,13] [,14]
[1,] 252 254 258 261 263
[2,] 335 340 337 323 327

Not too bad, but we need to distinguish the rows by providing row names:
2Note on R/S-PlusCompatibility: At the time this is written, R does not recognize

formal methods when automatically printing objects. You can get somewhat the same
effect by defining objects with the name print.Class where Class is the class of the
object. Meanwhile, imagine all the automatic printing in the examples replaced by, e.g.,
show(xy).

9

"x" and "y" should be good enough. The column names are not too nice
either, because they make readers think that a track really is a matrix, and
when we get on to thinking about other methods, that is not the way we
want to think of track objects. We could put in empty column labels, but it
might be better to be reminded of how many points there are in the object,
so let’s use 1, 2, ... The row and column names of the matrix are set by
replacing the dimnames (see the online documentation ?dimnames).

> dimnames(xy) <- list(c("x", "y"),
+ 1:ncol(xy))
> xy

1 2 3 4 5 6 7 8 9 10 11 12 13
x 156 182 211 212 218 220 246 247 251 252 254 258 261
y 348 325 333 345 325 334 334 332 347 335 340 337 323

14
x 263
y 327

Good enough for now. We now package up the method as a function,
and supply it to setMethod. The best way to do this, as usual, is to call
dumpMethod:

> dumpMethod("show", "track")
Method specification written to file "show.track.S"

Whether or not a method has been defined explicitly, this will write out the
current method, maybe the default method. Then we can edit the definition
in the file to be what we want, in this case:

setMethod("show", "track",
function(object) {
xy <- rbind(object@x,
object@y)
dimnames(xy) <- list(c("x", "y"),

1:ncol(xy))
show(xy)

})

Once we source in this file, the new method is defined.

> source("show.track.S")
> tr1

1 2 3 4 5 6 7 8 9 10 11 12 13
x 156 182 211 212 218 220 246 247 251 252 254 258 261

10

y 348 325 333 345 325 334 334 332 347 335 340 337 323

14
x 263
y 327

The style of this method is typical of many: we construct a new kind of
object, and then apply the original generic function to this object. This
allows us to reuse the existing method (in this case, for printing matrices),
without having to worry about the details of that method. Use this technique
liberally, it often provides the most elegant implementation of methods. Just
be sure that when you recall the generic function you are getting a different
method: otherwise an infinite loop will result. (S catches such loops fairly
cleanly, but they still can be confusing to debug.)

For many classes, plotting the objects is as important as printing them.
For track objects, this is certainly true. The first question is how to plot the
objects by themselves: a method to interpret expressions such as plot(tr1).
A natural plot is just a scatter plot with the positions on the x axis and
the measurements on the y axis. Obviously, this was partly what suggested
the names of the slots in the first place. The second question is how to plot
tracks against other objects: in this case we would usually just take the y

measurements to define the object, and ignore the x values. 3

The function plot has arguments x and y, plus other arguments for sup-
plying various parameters.

> args(plot)
plot(x, y, ...)

For plot, we want to provide methods that depend on both the x and y

arguments. The method is set the same way as before, but now we give as
the second argument to setMethod a signature with two arguments specified.
For example, if we want to plot a track object on its own, the y argument
to plot is missing. This is a perfectly legitimate class to specify.

setMethod("plot",
signature(x = "track", y = "missing"),
function(x, y, ...) whatever ...

)

3Note on R/S-PlusCompatibility: In R, the current definition of plot has only x
as an argument, so the examples here that use both arguments can not be applied. You
can either re-define plot to have two arguments or follow the style shown with a different
function: see the online documentation for setMethod for some examples in this style.

11

There remains the definition of the method. Let’s take a simple approach
and just call plot again, with the two slots as arguments: plot(x@x, x@y).
To establish the corresponding method:

setMethod("plot",
signature(x = "track", y = "missing"),
function(x, y, ...) plot(x@x, x@y)

)

As it happens, the same result is obtained from converting the object to its
“unclassed” form: unclass(tr1) is a named list with elements x and y, and a
plot method for such objects produces the same scatter plot. Either way, the
only major drawback is that the labels for the plot are not very nice. From
looking at the documentation of plot, we see that arguments xlab and ylab

supply labels. We can edit the method by calling dumpMethod, for example,
and editing the resulting file to supply labels:

setMethod("plot",
signature(x = "track", y = "missing"),
function(x, y, ...)

plot(unclass(x), xlab = "Position",
ylab = "Value", ...)

)

Evaluating this task redefines the method with fairly reasonable labels.
So how about plotting track objects against other objects? Here we want

to specify the x argument, but not the y at all, if the track object is to be
on the x axis. We can just omit the y argument from the signature. The
method is simple again (aside from labels):

setMethod("plot",
signature(x = "track"),
function(x, y, ...) plot(x@y, y, ...)

)

Similarly, if the track is on the y axis:

setMethod("plot",
signature(y = "track"),
function(x, y, ...) plot(x, y@y, ...)

)

(We have to be careful to keep the two uses of the names x and y clear here—
for the slots in the object and for the arguments and axes in the plot.) With

12

these three methods, we are now prepared to plot using track objects in a
pretty reasonable style.

Not perfectly, however. Notice that the labels in the plots will not show
the expression defining the track object (e.g., tr1). Also, there are other
plotting functions besides plot, to do things like drawing lines, adding scat-
ters of points, or displaying text at co-ordinates defined by the data. It
would be nice to include all these as well in the methods for track objects.
All this can be accomplished and quite elegantly, but it is a little too far into
the structure of S methods to include here. See [Cha98] for more examples
and details.

References

[BCW88] R. A. Becker, J. M. Chambers, and A. R. Wilks. The New S
Language. Chapman and Hall, 1988.

[Cha98] John M. Chambers. Programming with Data: A Guide to the S
Language. Springer-Verlag, 1998.

13

