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We consider the problem of blocking response-surface and factorial designs when block sizes 
are prespecified, often rendering standard approaches inapplicable. A generalization of Har- 
ville’s (1974) algorithm is given for generating nearly D-optimal block designs and is applied 
in a number of representative settings. The algorithm is time and space efficient and can be 
used in conjunction with qualitative treatments for generating many of the classical designs- 
balanced and partially balanced incomplete block designs, for example. 

KEY WORDS: Block designs; D optimality; Exchange algorithms; Incomplete blocks; k- 
exchange algorithm: 

1. INTRODUCTION 

Designing experiments can be a frustrating task 
when experimental units are scarce and not ex- 
changeable. For example, in a recent process-control 
experiment, the objective was to study the main ef- 
fects and two-factor interactions of four process vari- 
ables on the texture of a finished food product in a 
plant scale-up. We became involved when the man- 
ufacturer realized that the process seemed hopelessly 
out of control because an unacceptably high pro- 
portion of the product was being scrapped. Only three 
days were available for experimentation and, since 
each change in the process required approximately 
1.25 to 1.5 hours to establish a new equilibrium, only 
6 runs per day, or 18 runs in total, were available. 
Further, since day-to-day variation in plant condi- 
tions could not be ruled out, it was hoped that a 
suitable design incorporating days as blocks could be 
devised. The constraints on the number of blocks 
and their sizes made application of standard design 
techniques somewhat elusive, however; a sensible 
distribution of a basic 24 factorial into three blocks 
was, at the very least, not obvious. 

If four instead of three days had been available, 
it may have been possible to adapt standard ap- 
proaches in a fairly straightforward manner. For ex- 
ample, a 24 factorial in four blocks of size 4 might 
have been appropriate, with the remaining two runs 
in each block used to provide replication. Demand- 
ing additional resources or tailoring the inquiry to fit 
those available may occasionally be effective, but often 
such tactics fail to provide a satisfactory solution. 

In another instance, a team of chemical engineers 

and food scientists was concerned with the optimi- 
zation of stability in a whipped topping. Here, sta- 
bility relates to the amount of “melting” that occurs 
after the aerosol topping is dispensed. Previous ex- 
perimentation had indicated that the most important 
factors were the amounts of two emulsifiers and the 
amount of fat. Curvature of the response in each of 
the three factors was also a strong possibility. These 
results, together with the objectives of the study, 
suggested the use of a three-factor central composite 
design to estimate the associated full quadratic re- 
sponse-surface model. The experiment was to be car- 
ried out in a pilot plant, which was available for five 
days. Since four batches per day could be produced 
in the pilot plant, at most 20 experimental units were 
available. If day-to-day effects are of concern, the 
experiment should be run in five blocks of size (at 
most) 4. The question again arises: How should the 
experimental units (runs) be partitioned into blocks 
(days)? 

The literature is of limited help for the types of 
design problems illustrated by these examples. Some 
useful approaches to blocking response-surface de- 
signs were described by Box and Draper (1987, sec. 
15.3). For example, a three-factor central composite 
design can be implemented usefully in three blocks 
of sizes 5, 5, and 7. Each of the first two blocks is 
composed of a half replication of the 23 factorial plus 
one center point. The third block consists of the six 
star points and an additional center point. If, in ad- 
dition, the star points are carefully located (Box and 
Draper 1987, sec. 15.3), the block effects will be 
orthogonal to the treatment (regression) effects. Un- 
fortunately, the block size requirements are not met 
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in our illustration, and only 17 of the 20 available 
units have been used. 

In the simple examples discussed previously, ap- 
plication of classical design is difficult, if not impos- 
sible, without some modification of the sample or 
block size constraints. More complicated situations 
often arise, particularly in industrial settings. Ex- 
perimental units often differ on a set of relevant at- 
tributes that force blocks of varying size. In such 
situations, an examination of “optimal” designs, along 
with a comparison of standard design schemes on 
various design criteria, can provide valuable insight 
regarding sensible blocking schemes. 

1.1 Structure of Optimal Block- 
Design Problems 

The structure of an optimal block design consists 
of three broad components-the design constraints, 
the model, and the optimality criterion-that de- 
pend on the particular application. 

Design Constraints. For the purposes of this re- 
port, the design constraints consist of three compo- 
nents: (a) the sample size II, (b) the feasible region 
x from which the t x 1 vectors xi (i = 1, . . . , n) 
of factor settings or treatment combinations can be 
obtained, and (c) the set E composed of the N 2 y1 
available experimental units. We assume that E can 
be partitioned into b available blocks such that the 
kth block consists of Nk > 0 homogeneous experi- 
mental units. Further, let nk 5 Nk denote the number 
of experimental units from the kth available block 
actually used in the experiment. If N = ~1, then Nk 
= nk for all k. Otherwise, the kth block in the actual 
design will be a subset of the kth available block, 
including the possibility of the empty set, so some 
of the available blocks may not appear as blocks in 
the design. Finally, associated with each experimen- 
tal unit in the kth available block is a b x 1 indicator 
vector of the form uT = (0, . . . , 0, 1, 0, . . . , 0) 
with a 1 in the kth position and zeros elsewhere. The 
collection of these indicator vectors is denoted by U, 
= {uj, j = 1, . . . , N}. 

Model. We are concerned only with designs un- 
der the additive blocking model 

yj = fT(.Xl)T + Ul’p + Ei, i = 1, . . , II, (1) 

where t (p x 1) and b (b x 1) are unknown param- 
eters and the errors Ei are iid with mean 0 and con- 
stant variance CS*. The component f, assumes various 
forms depending on the problem. In the response- 
surface case, fl will typically consist of polynomial 
terms in the factor levels. Qualitative treatments can 
be represented by choosing f, from the appropriate 
class of indicator vectors. 
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Model (1) can be represented in matrix form as 

Y = X,T + X*b + c 

= Xa + e, (2) 

where Y = (y;) is the II x 1 vector of responses, E 
= (E,) is the IZ x 1 vector of errors, X, and X, are 
II x p and n x b matrices with rows f:(x) and 
uf, respectively, X = (X,, X1), and aT = (r7‘, 8’). 

Design Criteria. Although several design criteria 
have been proposed, we deal with only two, D and 
D, optimality. D-optimal designs are those that min- 
imize the determinant of the covariance matrix 
(XTX) lo2 of the least squares estimate of (Y. 

Similarly, D,-optimal designs minimize the co- 
variance matrix of the least squares estimates of a 
selected subset of parameters. We investigate D,- 
optimal designs that minimize the determinant of the 
covariance matrix of the least squares estimate of 5, 
in the context of Model (2), the block effects /J being 
regarded as nuisance parameters. Specifically, par- 
tition (XTX)-l = (D,j) (i, j = 1, 2) where D,,cJ’ 
(p x p) is the covariance matrix of the least squares 
estimate of r, and let Q2 = I - X,(X:X,) ‘X2 denote 
the projection operator for the orthogonal comple- 
ment of the column space of X2. Then a D,-optimal 
design for z minimizes the determinant of D,, = 
(XTQ2X,)-‘. We assume that there is at least one 
design for which the determinant of XTQ2X, is non- 
zero and that overparameterization is avoided by 
choice off,. In part, this implies that, because of our 
choice OS ui, the column space of X1 may not contain 
a constant vector. 

Under Model (2), the D-optimal design for (Y and 
the D,-optimal design for t are equivalent when N 
= n: 

IXTXI = IZX2l x IXfQ,X,l, (3) 

and maximizing IXTQ,X,l is equivalent to maximiz- 
ing lXTXl, since 1X:X21 is a constant (Harville 1974, 
1975). For further background on optimality criteria 
and recent developments, see Atkinson (1982) and 
Fedorov (1972). 

Following these specifications, a design algorithm 
is typically employed to determine the feasible set 
of points that is best, according to the chosen cri- 
terion, for inference based on the specified regression 
model. Very little has been published, however, re- 
garding such algorithms for blocked response-surface 
models as those described previously. Existing al- 
gorithms like DETMAX (Mitchell 1974) are not im- 
mediately applicable when y1 = N because they do 
not explicitly consider block size constraints. For the 
most part, previous work has focused on the quali- 
tative treatment case. Harville (1974) was the first 
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to develop an algorithm that explicitly allows for 
blocking. Harville’s algorithm searches for D-opti- 
mal designs and is applicable to Model (2) with f, 
restricted to the class of indicator vectors. Since our 
approach to blocking starts with Harville’s frame- 
work, we give a relatively detailed overview. 

1.2 Harville’s Algorithm 

Beginning with a nonsingular starting design, Har- 
ville’s algorithm searches for improvements by se- 
quentially attempting three classes of changes in three 
corresponding phases. In the first phase, improve- 
ments are accomplished through exchanges. In an 
exchange, the treatment assigned to a given exper- 
imental unit is replaced by some other treatment. In 
the interchange phase, improvements are accom- 
plished by switching the allocation of a treatment 
from one experimental unit to a different experi- 
mental unit and simultaneously switching the allo- 
cation of the treatment assigned to the second ex- 
perimental unit back to the first experimental unit. 
Clearly, different treatments and blocks must be in- 
volved if improvements are to result. If there are N 
experimental units available, of which only y1 < N 
are to be used, an attempt to identify an optimal set 
of n experimental units is made during the replace- 
ment phase. This is accomplished by sequentially re- 
placing assigned units U, = {u,, I = 1, . . . , n} with 
units in U, - U,,, provided that improvements in the 
optimality criterion result. 

To speed convergence, Harville exploited both the 
assumed qualitative treatment structure and the space- 
saving concomitant with D, optimality [see Eq. (3)]. 
For changes during phases 1 and 2 of Harville’s al- 
gorithm, Q2 is constant, and it is, therefore, only 
necessary to evaluate the p x p matrix D,,. Further, 
because of the simple treatment structure, exchanges 
and interchanges affect just two rows and two col- 
umns of XTQ2X1, and consequently the impact of 
any interchange (after the first) can be assessed by 
computing the determinant of a 2 x 2 matrix. Har- 
ville made use of these ideas in developing a rela- 
tively efficient search procedure in phases 1 and 2. 
Complete reevaluation of IXTQ,X,l is required in 
any phase 3 replacement or when a new pair of treat- 
ments is encountered during phases 1 and 2. 

1.3 Other Approaches to Blocking 

Freedman (1976), Jones (1976), Jones and Ec- 
cleston (1980), and Eccleston and Jones (1980) re- 
ported algorithms in conjunction with a weighted 
trace criterion. These approaches do not take ad- 
vantage of Harville’s algorithm and consequently are 
not quite as versatile, nor do they allow f1 to rep- 
resent a general response-surface model. 

If sample sizes are very large, approximate or large- 
sample designs may be used effectively. Relevant 
theory and algorithms were provided by Cook and 
Thibodeau (1980) and were recently extended by 
Nachtsheim (in press). Unfortunately, as shown by 
Cook and Nachtsheim (1980), large-sample designs 
are not particularly effective when n or some of the 
blocks are small. Finally, Draper and John (1988) 
investigated response-surface designs for quantita- 
tive and qualitative variables. 

In Section 2, we present an extension of the Har- 
ville algorithm that can be used in conjunction with 
Model (2). In Section 3, a number of examples 
are discussed. Conclusions are presented in Sec- 
tion 4. 

2. CONSTRUCTING BLOCK DESIGNS FOR 
RESPONSE-SURFACE MODELS 

A number of difficulties preclude direct application 
of Harville’s algorithm for Model (2). First, ex- 
changes typically impact every element of X:Q,X,. 
Second, response-surface design spaces tend to be 
much larger than design spaces for qualitative treat- 
ments. Third, changes in experimental units during 
phase 3 require recomputation of IXTQ,X,l from 
scratch, and this leads to further inefficiencies. Fi- 
nally, it is fairly easy for phase 3 to get stuck at a 
local optimum, particularly when an entire block must 
be deleted from the starting design to obtain the 
optimal design. 

In the remainder of this article, our general ap- 
proach follows the first two phases of Harville’s al- 
gorithm. This means in particular that N = II, the 
block sizes are predetermined (Nk = nk), and all 
available experimental units are to be used in the 
design. Algorithms for the case n < N are under 
investigation. 

2.1 Phase 1: Exchange Algorithm 

The k-exchange algorithm (Johnson and Nacht- 
sheim 1983) is used in phase 1. The user-specified 
constant k can range from 1 to n. For k = 1, the 
algorithm is essentially the same as Wynn’s (1972) 
algorithm. When k = IZ, the algorithm reduces to 
the modified Fedorov algorithm (Cook and Nacht- 
sheim 1980). Typically, k < n/4 is sufficient (Cook 
and Nachtsheim 1982). 

The k-exchange procedure was originally devel- 
oped for producing D-optimal designs and is based 
on the fractional increase in the determinant of XTX 
when xi,, the jth treatment combination in block i in 
the present design, is exchanged for an arbitrary 
treatment combination x in x, in effect replacing the 
corresponding row of X,, ff(x,,), with f:(x). Letting 
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342 R. DENNIS COOK AND CHRISTOPHER J. NACHTSHEIM 

“up” denote the updated form of an expression after 
an exchange has taken place, 

I(XTX)upI = IXTXI AE(xij, X>, 
where 

AE(x,,, X) = 1 + U(X) - ~(Xij) 

- UW(Xi,> + 
and 

(4) 

u2(xij, x) 

u(x,j, x> = (f*(xij) T, wwTx)-l(f(x)T, %qT, 

where u(x) = u(x, x) is proportional to the variance 
of a fitted value in the present design prior to up- 
dating and ui is the indicator vector for block i. Each 
iteration of the k-exchange algorithm begins by iden- 
tifying the points in the present design with the k 
smallest values of the variance function u(xij). Start- 
ing with the design point xi,,, minimizing u, these k 
points are then exchanged sequentially for the re- 
spective points in x that maximize the AE function. 
For example Xilj, is exchanged for the point that 
achieves max,AE(x;ljl, x). The design lXTXl and 
(XTX)-l are updated after each exchange. 

During the review process, we became aware of a 
generalization of the k-exchange algorithm, the kl- 
exchange algorithm of Atkinson and Donev (in press). 
In the kl-exchange algorithm, only I points in x are 
considered for inclusion. Atkinson and Donev ap- 
plied the algorithm in blocking situations, although 
their approach is markedly different from that given 
here. 

Since the D and D, criteria are equivalent when 
N = IZ, the k-exchange algorithm can be used without 
modification or with the modifications suggested by 
Atkinson and Donev (in press). A considerable in- 
crease in efficiency can be achieved, however, by 
exploiting the block structure when updating and 
maximizing the AE function. First, recalling that Izi is 
the size of the ith block, partition XT = (FT, . . . , 
Fl), where F, is the (n, x p) submatrix consisting of 
the rows of X1 assigned to block i and, for notational 
convenience, let M = X[Q2X1. Then straightfor- 
ward algebra will verify that 

(5) 

where f,; is the row average of Fi, ~,i = F,$Ini. 
Consequently, when using the AE function, we can 
work in terms of the p x p matrix h4 rather than the 
full (p + b) x (p + 6) matrix XTX, which may be 
quite large. For this to be an effective strategy, how- 
ever, we need to have the ability to update M directly 
after each exchange. 

Direct updating of M is accomplished by first not- 

ing that the n x n projection operator Q2 is block 
diagonal, Q2 = block - diag(QJ, where 

Qii = Z, - lilfln;, (6) 

1; is the ni X Iii identity, and li is an ni X 1 vector 
of 1’s. Then 

M = f: FkTQkkFk, 
k=l 

(7) 

and, since replacing Xii with x affects only Fi, M can 
be updated by replacing 4 in (7) with 

FYP = F, + Cij(fT(X) - flT(Xi,)) 

= Fi + Cijd~, (8) 

where “up” again denotes an updated form, cij is the 
Izi X 1 vector with a 1 in the jth position and O’s 
elsewhere, and d, = fr(x) - fr(x,). Combining (7) 
and (81, 

M”p = 2 FlQkk Fk + dijc:Qiicljdf 

+ dijC$Q,,Fi + FTQ,;ci,d,j. (9) 

Using (6), this updated form can be expressed more 
conveniently as 

M,, = M + A,B%, (10) 

where A, = [aij, d,] and B, = [dij, by] are matrices 
of dimension-p X 2, Uij = (fr(~) - fii) - d,ln,, b, 
= fr(x,) - fli, and dij is as defined near (9). 

As a consequence of (lo), standard formulas for 
rank-2 updating of Mm1 apply (e.g., see Fedorov 1972, 
pp. 99-105): 

Mupl = M-’ - M-‘Ai,[Z* + B~M-‘A,]~‘B,:M-‘. 

(11) 

In short, updating the p x p matrix Mm1 requires 
computation of the inverse of the 2 x 2 matrix [ZZ 
+ B;M-‘Aij], the determinant of which is equal to 
AE: 

I@=)upi = 1-UX21 x lMupl 

= IX$X,I x [MI x 1Z2 + B;M-‘A,[ 

= lXTXl A&,, xl. (12) 

As a consequence of these results, (XrQ2Xl)-1 is 
computed from scratch only once, and computation 
of the full information matrix XTX and its inverse is 
avoided. 

2.2 Phase 2: Interchanges 

In a phase 2 interchange, x is ignored and treat- 
ment combinations are “traded” between blocks. 
Specifically, this involves systematically replacing xi,, 
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the jth treatment in block i, with xkl, the Zth treatment 
in block k, while simultaneously replacing xk[ with xi, 
(i # k) as long as improvement results. To under- 
stand how to implement this procedure, it is neces- 
sary to investigate relationships between a starting 
design and the design obtained after a single inter- 
change. The required updating could be accom- 
plished by repeated application of the rank-2 updat- 
ing procedures associated with (10) and (ll), since 
a single interchange corresponds to two exchanges. 
Surprisingly, an interchange can be accomplished with 
a single rank-2 update. To see this, note that the 
interchange between blocks i and k affects only Fj 
and Fk. Thus CP = F, - C;jdzk, and F”kp = Fk - 
Ckd;,k,, where di,,k, = fl(X,) - fl(Xk,). Following the 
steps that led to (lo), it can be shown that a double 
update of M resulting from an interchange is of the 
form 

M,p = M + A;j,klBI:k/, (13) 

where Aij,k, = [aij,kl, dij,k/] and Bij,k/ = [dij.kl, Jij,kl] 

are again p x 2 matrices, &j,k/ = fl(xlj) - fli - 
fl(Xkl) + flk, bij.k, = ai,,k/ + Vdij,kl, V = (nr - 1)/n; 

+ (& - l)lnk, and dij,kl is as defined previously. 
Updating ML; is accomplished by using (ll), re- 
placing A, and B, with Aij,k, and Bi,,k,, respectively. 
Similarly, the fractional change in the determinant 
of M is 

IM”pI = IMJ X 11~ + B;,HM~‘A;~..HJ 

= IMI A,(Xij, xkl). (14) 

Thus in this phase of the algorithm the operational 
Criterion iS to select Xi, and & to maximize A,, each 
evaluation requiring the determinant of a 2 x 2 ma- 
trix. 

2.3 Starting Designs 

To begin, the algorithm described in Sections 2.1 
and 2.2 requires a starting design with [MI # 0. We 
select such a starting design by first determining the 
treatment combinations and then distributing these 
across the experimental material. 

Treatment Combinations. The treatment combi- 
nations for the starting design are chosen by ignoring 
the block structure and using the algorithm of Galil 
and Kiefer (1980) to generate a (p + l)-point start- 
ing design for the model y; = Z? + fr(xJz + aI (i = 
1 . . 9 n). Since the constant term is included, p 
; ‘1 points are required for a nonsingular design. 
Briefly, the Galil-Kiefer algorithm begins with a l- 
point design and then adds points sequentially until 
a (p + 1)-point design is obtained. Each point is 
added to maximize IX1 Xrl, where X1 corresponds to 
the previous design in the sequence. 

Allocation to Experimental Units. Let x1, x2, 
. . . > x,+~ denote the treatment combinations deter- 
mined from the Galil-Kiefer algorithm. To insure 
that M is nonsingular, we use the following simple 
scheme for constructing a connected starting design: 
Beginning with x1, assign the treatment combina- 
tions sequentially to the units in block 1, starting 
over if n, > p + 1. Let xk, denote the last treatment 
assigned to block 1. The assignment to block 
2 begins with xk, and proceeds sequentially, xk,, 
xk,+l, . . . > xk,. Similarly, the assignment to block 3 
begins with xk, and again proceeds sequentially, 
xk,, xk,+l, * * . > xk,* Generally, the treatments 
are assigned sequentially to blocks, subject to 
the constraint that the last treatment assigned to 
block i is the first treatment assigned to block 
i + 1. 

3. ILLUSTRATIONS 

3.1 Constructing Classical Block Designs 

Classical block designs involving qualitative treat- 
ments are typically D optimal, and when permitted 
by the design constraints, the algorithm of Section 2 
will often yield such familiar designs. For example, 
suppose that f?(x) = (x1, x2, x3, x1x2, x1x3, x2x3), N 
= 8, t = 3, x = [ - 1, 113, and it is necessary to run 
the experiment in b = 2 blocks of size 4. Using 
traditional notation to indicate treatments consisting 
of high and low combinations of the factor levels, 
the algorithm assigns the treatment combinations (l), 
ab, ac, and bc to one block and a, b, c, and abc to 
the other. This usual fractional factorial design is, of 
course, obtained from a 23 by applying the defining 
relation Z = ABC and assigning the treatments in 
each half-fraction to the respective blocks. 

Similarly, the algorithm can be used to construct 
balanced and partially balanced incomplete block de- 
signs for a suitable choice of sample sizes, numbers 
of treatments, and block sizes. In our experience, 
the algorithm has not failed to find such designs when 
they are known to exist. Notably, the proposed al- 
gorithm is significantly faster than the Harville al- 
gorithm for such problems. For example, when t = 
3, b = 7, and N = 21, balanced incomplete block 
designs are known to exist. The Chen-Harville FOR- 
TRAN code (Chen 1977), implemented on a Macin- 
tosh Plus computer, constructed one such design in 
509 seconds. From the same starting design and with 
k = 3, our algorithm converged to the same design 
in 66 seconds. We found this substantial difference 
in time to be a little surprising, since Harville’s pro- 
cedure is tailored to a qualitative treatment structure. 
We have observed similar percentage changes in time 
in other problems. 
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3.2 Constructing Blocked Factorial and 
Response-Surface Designs 

Let us return to the first example discussed in Sec- 
tion 1, in which 18 experimental units in three blocks 
each of size 6 were available for estimation of the 
model 

fX4 

= @I, x2> x3> x4> xIx?, xlx3> x1x4, x2x3, x2x4, x3x4), 

with x = [ - 1, 114. This model allows estimation of 
main effects and two-factor interactions when each 
factor is to be run at two levels. Our algorithm pro- 
duced the following design: Block l--b, d, c, ab, ad, 
nbcd; Block 2-(l), UC, abc, abd, acd, bed; and Block 
3-a, ac, be, bd, cd, abed. This design consists of 
the complete 24 factorial with treatment combination 
abed repeated in blocks 1 and 3 and treatment com- 
bination ac repeated in blocks 2 and 3. 

We now turn to blocking in standard response- 
surface experiments. Suppose that t = 2, N = 14, 
and b = 2. We used the proposed algorithm to con- 
struct D-optimal designs for block sizes (7, 7), (8, 
6), and (9, 5) m conjunction with the second-order 
response-surface model f r(x) = (x,, x2, x:, x:, x,xJ 
and x = [ - 1, 0, l]*. Resulting designs are pictured 
in Figure 1. Of interest in the (7, 7) case is the sim- 
ilarity of the layouts in each block. The treatment 
combinations in one block can be obtained by a sim- 
ple reflection about the line xl = x2 of the coordinates 
in the other. For the (9, 5) case, familiar designs 
result in each block. Moreover, in every case, if block 
effects are not significant, the design is simply a stan- 
dard 3* factorial with corner and center points having 
two replicates. This represents an extremely efficient 
use of the five repeat observations; not only are 5 df 
obtained for pure error, but the placement at the 
corners leads to more precise inference regarding 
main effects and interactions. 

Block Block I Block 2 Block 1 + Block 2 

(Yi: fl 1-y-j 1-g 

T = T - Q=Q 

(R6) t l 1 j l t t o t 

Figure 1. Three Block Designs for a Second-Order Re- 
sponse-surface Model With Two Factors, 14 Observations, 
Two Blocks, and the indicated Block Sizes. Solid dots indicate 
one replicate; hollow dots indicate two replicates. 

TECHNOMETRICS, AUGUST 1989, VOL. 31, NO. 3 

As a final example, we consider the second design 
problem discussed in the introduction. In this case, 
n = 20, t = 3, b = 5, and the block sizes are equal. 
Again, a second-order response-surface model is of 
interest, this time in three factors. The best design 
found is pictured in Figure 2. In an interesting near- 
symmetry, four out of five blocks consist of two cor- 
ner points, one star point, and one edge center. The 
fifth block consists of three corners and one edge 
center. 

3.3 Blocking Existing Designs 

It is often desirable to run a prespecified collection 
of treatment combinations in a blocked experiment. 
In this section, we discuss the use of our algorithm 
in several such situations. 

In the four-factor, H-run experiment discussed 
previously, the fact that all 16 treatment combina- 
tions in the standard 24 were included is reassuring; 
if block effects are not significant, a fairly standard 
analysis ensues. This will not always occur, however. 
For example, if a different model had been specified 
(e.g., one having fewer interaction terms), some cor- 
ner points might not be included in the D-optimal 
design. In such situations, the experimenter can sim- 
ply prespecify the set of treatments desired in the 
final design, and omit phase 1 of the algorithm. Phase 
2 will then find the optimal assignment of required 
treatments to blocks. In the preceding example, the 
experimenter may wish that the 18 treatment com- 
binations consist of the 24 corner points plus two 
center points. Omitting phase 1, the algorithm pro- 
duced the following design: Block l-u, d, ab, bc, 
bd, abed; Block 2-(l), c, ad, abc, acd, bed; and 
Block 3-b, UC, cd, abd, (0), (0), where (0) indicates 
a center point. In contrast with the previous design, 
the replicated points are placed in the same block. 

As noted in Section 1, for a second-order response- 
surface model in three factors, Box and Draper (1987, 
p. 512) suggested a three-factor central composite 
design in three blocks of sizes 5, 5, and 7 for a total 
of 17 observations. Various advantages accrue from 
the use of central composite designs. In this example, 
if the star points are located at distance CY = 2.8”2 
from the center, block effects will be orthogonal to 
treatment effects. Further, as long as (Y > 1, each 
factor is observed at five levels, allowing the ade- 
quacy of the second-order model to be studied. Of 
course, the suggested block sizes (5, 5, and 7) may 
not be possible. When this is so, a compromise ap- 
proach involves using the central composite design 
as a starting design and then applying only phase 2 
as described previously. In the current example, if 
(Y = 2.8112 and block sizes of 5, 5, and 7 are specified, 
the phase 2 interchange procedure results in the Box- 
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Block I Block 2 Block 3 

Rlnck A Block 5 

Figure 2. Block Design for a Second-Order Response-Sur- 
face Model With Three Factors, 20 Observations, and Five 
Blocks Each of Size 4. 

Draper orthogonal blocking design. This procedure 
was tried for various other values oft in a full second- 
order response-surface model with similar results. 

Finally, experiments are sometimes blocked sim- 
ply as protection against possible effects that may not 
be real. A reasonable approach in such instances 
would be to construct an optimal design ignoring 
blocks and then to optimally allocate the chosen 
treatment combinations to blocks via phase 2. In this 
way, if the block effects do not materialize, the ex- 
periment is as efficient as possible. As in all of the 
cases discussed in this section, the experimenter’s 
choice between designs produced by the full algo- 
rithm and those produced from phase 2 alone should 
be guided by an inspection of the correlation struc- 
ture, the nature of the replication schemes, the rel- 
ative values of the criterion, and other relevant de- 
sign considerations. 

4. DISCUSSION: OPTIMAL VERSUS 
CLASSICAL DESIGN 

ample, prior knowledge of which interactions are 
likely to be negligible is essential. Further, we find 
that the situations in which classical designs work 
well are rather confining, occasionally leading to un- 
fortunate results. On the other hand, classical designs 
often do well on several criteria, and the analysis 
associated with a classical design tends to be rela- 
tively easy to conduct and interpret. 

Judging from experience, experimenters often have 
an overwhelming urge to tailor the scientific question 
or trim the experimental material to allow applica- 
tion of a particular classical design. For example, this 
may imply discarding treatments and experimental 
units so that the largest possible randomized com- 
plete block (RCB) design can be implemented. We 
do not universally condemn such manipulations, but 
the associated consequences cannot be adequately 
assessed without knowledge of the alternatives. Dis- 
carding experimental units will of course produce a 
drop in ]M] relative to a D-optimal design. Clearly, 
we cannot tell if the advantages of an RCB design 
override this drop if we have not computed the D- 
optimal design in the first place. 

Our basic contention is simply that optimality con- 
siderations allow the experimenter to broaden the 
base of available designs that must then be judged 
on a range of relevant criteria. Optimal designs often, 
but not always, fare well on such judgments. The 
algorithm presented here can be used to generate D- 
optimal blocking designs for general response-sur- 
face models. A technical summary of the algorithm, 
which was recently implemented in RS/Discover 
(BBN Software Products Corporation) is given in 
the Appendix. 
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APPENDIX: OPTIMAL BLOCKING 
ALGORITHM 

1. Obtain a nonsingular starting design by using 
the algorithm described in Section 2.3 and form 
X, and X,. Select k for use in the k-exchange 
algorithm. Select E for use in the termination 
criterion. Set N, = - 1. 

2. Exchanges. Let do = jX~jQzXloi, where X0 = 
[Xl”, X2] is the design matrix for current best 
design. Set NE = 0. 

Classical design has its own advantages and dis- 2.1. Set s = 0. Compute the variances of pre- 
advantages. Like optimal designs, classical designs diction for points in the design via (5). 
depend on a model, although to a somewhat lesser Identify and rank the k points x’, . , xk 
degree. When confounding a 2” factorial, for ex- having smallest variances. 
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2.2. 

2.3. 

2.4. 

2.5. 

R. DENNIS COOK AND CHRISTOPHER J. NACHTSHEIM 

Set s = s + 1. Consider the exchange of 
the point Y. Find the treatment combi- 
nation X* in x at which the multiplicative 
increase AE(Yr x) in the determinant cri- 
terion is maximal: A&?, x*) = max,A,#, 
X>. 
If AE(xS, x*) > 1, exchange xs for x*, up- 
date (XrQ2Xl)-1 and IXTQ2XiI by using 
(11) and (12), and set NE = 1. 
If s < k, go to step 2.2; otherwise, go to 
step 2.5. 
Let d, = IXTQ2X11. If (d, - dO)ldO > E, 
set do = d, and go to step 2.1. If (d, - 
d,)ld, < E, NE = 0, and NI > 0, go to step 
4. Otherwise, go to step 3. 

3. Interchanges. 
3.1. Set NI = 0. 
3.2. Set s = 0. Sequentially consider all non- 

identical pairs, (x,, xk,) i # k, j # I, of 
treatment combinations in different blocks 
for interchange. In particular, if A,(Xij, xk,) 
> 1, interchange Xii and xk[, update 
(XrQzX,)-’ and IXrQ,X,l by using (11) 
and (14), respectively, and set s = s + 1. 
The next pair in the sequence is considered 
after the necessary updating. After the last 
pair, go to step 3.3. 

3.3. Set NI = N, + s. If N, = 0, go to step 4. 
If s > 0, go to step 3.2. If s = 0 and N, 
> 0, go to step 2. 

4. stop. 

[Received May 1988. Revised January 1989.1 
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