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Improved Split-Plot and Multi-Stratum Designs

Abstract

Many industrial experiments involve some factors whose levels are harder to set than
others. The best way to deal with these is to plan the experiment carefully as a split-plot, or
more generally a multi-stratum, design. Several different approaches for constructing split-
plot type response surface designs have been proposed in the literature in the last 10 years
or so, which has allowed experimenters to make better use of their resources by using more
efficient designs than the classical balanced ones. One of these approaches, the stratum-
by-stratum strategy, has been shown to produce designs that are less efficient than locally
D-optimal designs. An improved stratum-by-stratum algorithm is given, which, though
more computationally intensive than the old one, makes most use of the advantages of this
approach, i.e. it can be used for any structure and does not depend on prior estimates of the
variance components. This is shown to be almost as good as the locally optimal designs in
terms of their own criteria and more robust across a range of criteria.

Keywords: A-optimality; D-optimality; hard-to-change factor; hard-to-set factor; mixed model;
prediction variance; response surface.
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1 Introduction

Fractional factorial and response surface designs are widely used in industrial and laboratory

based experiments. It has been increasingly recognized in recent years that many, perhaps most,

industrial experiments and many laboratory experiments involve some factors whose levels are

harder to set than others. It is clear that the best way to deal with such situations is to take

account in a structured way, when designing the experiment, of the hard-to-set factors by ensuring

that their levels do not have to be set for each run, but only less frequently. If there are only

hard-to-set and easy-to-set factors, this leads to a (usually nonorthogonal) split-plot structure. If

there are very-hard-to-set (VHS), fairly-hard-to-set (HS) and easy-to-set (ES) factors, we have a

split-split-plot structure. Generally, each level of hardness-to-set in factors which is taken account

of in the design defines a stratum, as does each level of blocking, and, following Trinca and Gilmour

(2001), we refer to designs with factors in at least two strata as multi-stratum designs.

The restricted randomization in multi-stratum designs introduces additional random effects

into the model. We will assume that there are s strata, with stratum i having ni units within each

unit at stratum (i − 1), stratum 0 being defined as the entire experiment (n0 = 1). The model

can then be written as

Y = Xβ +
s∑

i=1

Ziϵi,

where y is the n × 1 vector of responses, assumed to be a realization of the random variable Y,

X is the n × p design matrix for the p-parameter treatment model, β is a p × 1 vector of fixed

treatment parameters, Zi is an n×mi indicator matrix for the units in stratum i, mi =
∏i

j=1 nj,

ϵi ∼ N(0, σ2
i Imi

) is an mi × 1 vector of random effects and all random effects are uncorrelated.

The main aim is usually to estimate the treatment parameters β but, in order to estimate their

standard errors, it is also necessary to estimate the variance components σ2
i , i = 1, . . . , s.

Following Huang, Chen and Voelkel (1998) and Bingham and Sitter (1999), there is a large

body of work on regular (mainly two-level) fractional factorial designs in multi-stratum structures

- see Cheng and Tsai (2009) for recent comprehensive results. This work extends the concepts of

resolution and aberration to orthogonal multi-stratum structures. The orthogonality means that

all information on each effect appears in a single stratum and the parameters and their standard

errors can be estimated by least squares using any standard analysis of variance program which

deals with orthogonal multi-stratum structures.
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Irregular fractional factorial and response surface designs require different procedures for the

analysis of data, due to the nonorthogonality, which means that information on some parameters

appears in more than one stratum. Letsinger, Myers and Lentner (1996) recommended analyzing

the data using residual maximum likelihood (REML) to estimate the variance components and

generalized least squares (GLS) to estimate the fixed (treatment) effects. This has become ac-

cepted as the standard analysis method, although Gilmour and Goos (2009) showed that it can

be unreliable when there are small numbers of units in the higher strata.

Letsinger, Myers and Lentner (1996) and Draper and John (1998) studied the properties of

standard response surface designs when they are run in split-plot structures, but the treatment

designs were not specifically chosen to take account of the split-plot structure. The first paper to

recommend choosing designs with a specific split-plot or other multi-stratum structure in mind

was by Trinca and Gilmour (2001). They suggested a stratum-by-stratum strategy for building

designs and then combining the designs from the different strata to optimize particular criteria

for each step in the procedure.

Trinca and Gilmour (2001) also outlined the possibility of finding a globally D- or A-optimum

design using a modified exchange algorithm. They preferred the stratum-by-stratum construction

because the globally optimum designs are only optimal for specific values of the ratios of variance

components, whereas the stratum-by-stratum method is optimal in the most challenging situation

in which σ2
i /σ

2
j → ∞, for all 1 ≤ i < j ≤ s, and because it can be implemented using only stan-

dard designs and interchange algorithms, which are computationally less expensive than exchange

algorithms.

Other authors followed up the suggestion of finding globally optimum designs for point prior

estimates of the variance components in specific types of structure. In particular, Goos (2002),

Goos and Vandebroek (2003), Goos and Donev (2007) and Jones and Goos (2007, 2009) developed

efficient exchange algorithms for split-plot response surface and mixtures designs and split-split-

plot response surface designs. They found designs which, even though the search procedures

depend on point prior estimates of the variance components, convincingly outperform the designs

of Trinca and Gilmour (2001) even in situations where the latter were claimed to be better.

A different approach to split-plot response surface design, motivated by the equivalent-estimation

(E-E) property, has being considered by Vining and co-authors. An equivalent-estimation design
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is one in which the GLS estimator of the fixed effects gives the same estimates as the ordinary least

squares (OLS) estimator. Vining, Kowalski and Montgomery (2005) showed how to accommodate

the treatments of central composite designs (CCDs) and Box-Benhken designs in the split-plot

framework such that E-E is satisfied. Parker, Kowalski and Vining (2007) proposed strategies for

systematically constructing E-E designs. However, in general, such construction methods result

in very inefficient designs with respect to the usual design criteria. In their search for globally

D-optimum designs, Goos and co-authors noted many D-efficient designs also satisfy the E-E

property. Macharia and Goos (2010) presented an algorithm to select among D-efficient split-plot

designs those satisfying the E-E property and produced better designs than the original E-E ones.

The aim of the present paper is to re-examine the stratum-by-stratum strategy of Trinca and

Gilmour (2001) for design construction, to introduce a modification which is a considerable im-

provement and to compare designs resulting from the existing approaches with respect to popular

design criteria. For a range of design criteria see Atkinson, Donev and Tobias (2007).

The relative advantages of stratum-by-stratum and global construction methods are described

in Section 2. The new algorithm is described in Section 3 and examples of response surface designs

are given in Section 4. Some general recommendations are made in Section 5.

2 Methods for Construction of Multi-Stratum Designs

In a GLS analysis, assuming that the ratios of variance components are known, the covariance ma-

trix of the estimated fixed effects is given by V(β̂|η) = σ2(X′V−1X)−1, where V =
∑s

i=1 ηiZiZ
′
i,

η′ = [η1, . . . , ηs], ηi = σ2
i /σ

2 and σ2 = σ2
s . In practice, the variance components have to

be estimated and the covariance matrix of the fixed effects is usually estimated by V̂(β̂) =

σ̂2(X′V̂−1X)−1, where V̂ =
∑s

i=1 η̂iZiZ
′
i, η̂i = σ̂2

i /σ̂
2 and σ̂2

i is usually the REML estimator

of σ2
i .

Two difficulties arise when experiments are being designed. First, neither ηi nor η̂i are known,

so we do not know V(β̂) or V̂(β̂) even up to the constant σ2. Secondly, V̂(β̂) is only an estimate

of V(β̂), can be a very poor one, especially when there are few units in some strata, and can

be better for some designs than for others. The global optimization and stratum-by-stratum

algorithms deal with these difficulties in different ways.

The global optimization algorithms optimize some scalar function ϕ(X|η) of V(β̂|η), such as
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the determinant (for D-optimality) or the trace (for A-optimality), for some point prior estimate of

the ratios of variance components η. The authors of these algorithms typically search for optimal

designs for a few different values of η and then examine ϕ as a function of η for the different

optimal designs found. They then choose one which is optimal across a wide range of values of

η in the expectation that this design will perform well. Conceptually, it would be a small step

to use a prior distribution for η and find a design which is optimal integrated across this prior.

However, this is computationally very expensive and not usually regarded as being worthwhile.

The stratum-by-stratum algorithm, on the other hand, takes a minimax approach and aims

to optimize the information in stratum i when σ2
i−1/σ

2
i → ∞. The justification for this approach

is that we are ensuring that the design is optimal in the most difficult situation in which the

higher order variance components are large. This is easiest to see in a two-stratum, i.e. split-plot,

structure. If η1 is large, the variances of parameters estimated in the whole plots stratum will be

very large compared with the variances of the parameters estimated in the subplots stratum; the

variances of the parameters estimated in the subplots stratum will be essentially identical to those

obtained by treating the whole plots as fixed block effects. If η1 is small, on the other hand, the

variances of the parameters estimated in the whole plots stratum will be much smaller, typically

only slightly bigger than the variances of the parameters estimated in the subplots stratum. The

philosophy of stratum-by-stratum construction is that it is better to ensure that we get variances

as small as possible in the case that they are very large and accept that, when they are small, it

might have been possible to make them smaller.

3 An Improved Stratum-By-Stratum Method

The algorithm of Trinca and Gilmour (2001) did not implement the stratum-by-stratum construc-

tion in the simplest or most effective way. Motivated by computational efficiency, they chose the

treatment combinations in each stratum separately, usually based on central composite or other

classical designs, and then arranged them in blocks using interchange algorithms. A second inter-

change algorithm was then used to match the designs from neighboring strata and then a third

to adjust the design for even higher strata. By using only interchange, rather than exchange,

algorithms, the method was very fast and could deal with very large problems where other meth-

ods struggled. However, Goos and his co-workers have shown that the designs obtained are often
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quite inefficient. In this section, we describe an improved procedure, which makes use of exchange

algorithms. Given the increased computing power in the last fifteen years, it is now possible to

easily realize the full benefits of the stratum-by-stratum approach.

Consider the general multi-stratum unit structure with s strata, where there may or may not

be treatment factors applied in any particular stratum. We construct designs from the highest

stratum to the lowest. For the highest stratum i (i ∈ {1, 2, . . . , s}) for which there are factors

to be applied, proceed as follow:

1. If i = 1 choose the treatment design for the factors to be applied to the units in stratum i

considering the efficiency for estimating the model parameters involving the factors in this

stratum only. Otherwise treat the units in stratum i−1 as blocks with fixed effects. Choose

the treatment for the factors to be applied in this stratum and their blocking arrangement

considering the efficiency for estimating the model parameters involving the factors in this

stratum only.

2. Set i = i + 1. Maintaining the design chosen in the last step, treat the units in i − 1 as

blocks with fixed effects. Choose the treatment combinations and their arrangement in the

units in stratum i considering the efficiency for estimating the model parameters involving

the factors in this stratum and the interactions between the factors in this stratum and the

factors in higher strata.

3. If i > 2 rearrange the blocks within the units in stratum i − 2 such that the efficiency is

maximized when we treat these units as blocks. Repeat this step for the units in strata

i− 3, . . . , 1.

4. If i = s stop; otherwise repeat 2 and 3, always considering efficiency for estimating parame-

ters in stratum i and interactions between the factors in the current stratum and all higher

strata.

The main modification of this method from that of Trinca and Gilmour (2001) is that the treat-

ment set at each stage is not chosen independently of the structures formed in the previous stage.

Thus we use a candidate treatment set for each stratum. The treatments that are actually chosen

in each stratum are optimized by an exchange algorithm rather than an interchange algorithm. Si-

multaneous optimization of treatments and their blocking arrangement is performed. The method
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can be used for any design criteria based on the variance matrix for blocked designs with fixed

number and sizes of blocks. Any algorithm for blocked designs can be used with slight modifica-

tion of construction of the model matrix in each step. We will refer to this method as the MSS

(modified stratum-by-stratum) approach.

In the illustrations in the next section we used DS- and AS-optimality criteria, the intercept

and block effects being considered as nuisance parameters. For second order models we used AS

on a scale such that the relative weights are 1/4 for each quadratic effect and 1 for other effects,

whenever the design region is a hypercube. An unblocked design will be needed only when there

are factors to be applied to the units in stratum 1. Let βi be the model parameter vector (pi − 1

parameters, excluding the intercept) to be estimated in stratum i. Let Xi be the mi × (pi − 1)

associated model matrix where mi is the number of units in this stratum. The partition of interest

of the variance covariance matrix of β̂i is (M−1
i )22 = (X′

iQiXi)
−1. For unblocked structures,

Qi = I − 1
mi
11′ while for blocked structures Qi = I − Bi(B

′
iBi)

−1B′
i with Bi being a mi × ni−1

indicator matrix for blocks in stratum i. Thus for DS we minimise |(M−1
i )22| and for AS-optimality

we minimise trace{Wi(M
−1
i )22} where Wi is a diagonal matrix with the weights scaled so that

trace(Wi) = 1.

4 Examples

In this section we present several illustrations comparing designs constructed by the MSS ap-

proach and other existing methods. For constructing the designs, for each stratum, in general, the

candidate treatment set was the full 3-level factorial or 2-level factorial, depending on the under-

lying model. In some cases, the designs are compared with respect to properties of the expected

variance-covariance matrix of the GLS estimator, β̂, (X′V−1X)−1 for a range of η values. AS

values are calculated as trace[W{(X′V−1X)−1}22] in which W is a diagonal matrix of weights as

in Section 3 re-scaled such that trace(W) = 1. DS values are calculated as |{(X′V−1X)−1}22|
1

p−1

(eliminating the row and column relating to the intercept). We find it useful to show differences

between designs on a variance scale, rather than a relative efficiency scale, since it is variances

which are important in practice. One design might be only 50% efficient with respect to another,

but if they both give very small variances, this is unimportant; conversely, one design might have

only slightly less than 100% efficiency relative to another, but if they both give very high variances,
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the difference could still be important in practice. However, for the sake of quick comparisons we

also show the efficiencies of alternative designs calculated with respect to the globally D-optimal

design, as best known from the literature, which is used as a baseline. The efficiency of one par-

ticular design is defined as the ratio between the criterion value (as defined above) of the baseline

design and the particular design, the larger the ratio the more efficient the design is compared

with the baseline.

We also compare the designs with respect to their prediction performances. The prediction

performance is evaluated by the average or integrated variance of estimated mean response, the

IV -efficiency, sometimes called I-, V - or IV -efficiency, and by the integrated variances of estimated

differences of responses, across the design region. For a multi-stratum design involving a total of

q factors, the average variance (IV ) is proportional to

IV ∝
∫
x∈X f ′(x)(X′V−1X)−1f(x)dx∫

x∈X dx
, (1)

where X ⊂ Rq is the experimental region of interest and f(x) is the model expansion of x, the com-

bination of the levels of the q factors. The numerator of (1) can be simplified to trace{M(X′V−1X)−1}

where M =
∫
x∈X f(x)f ′(x)dx is the region moment matrix of the region of interest. For spherical

and cuboidal regions the calculations of the integrals are exact (Hardin and Sloane, 1993).

Difference variance dispersion graphs were suggested by Trinca and Gilmour (1999) based on

the argument that often differences in response from some particular point, such as the expected

position of the optimum or standard operating conditions, are more important than the response

itself. Here we apply the concept of integrated variance for the difference between the estimated

mean response in the design region and the mean response estimated at the centre of the region.

The IDV criterion function is given by

IDV =

∫
x∈X var(ŷ(x)− ŷ(0))∫

x∈X dx
,

that is proportional to

IDV ∝
∫
x∈X [f(x)− f(0)]′(X′V−1X)−1[f(x)− f(0)]∫

x∈X dx
=

trace{M0(X
′V−1X)−1}∫

x∈X dx
, (2)

where M0 =
∫
x∈X [f(x) − f(0)][f(x) − f(0)]′dx and f(0) is the vector whose first element is one

and all others are zero.
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4.1 Example 1 (1 HS and 4 ES factors, 21 whole plots with 2 subplots

each)

This example was described in Trinca and Gilmour (2001) and served as motivation for some

other publications. Five factors were to be investigated in an experiment on protein extraction

from a mixture of two types of proteins and other components. The runs were to be executed

sequentially and one of the factors, the feed position for the inflow of the mixture, was hard to

set (HS). Fixing it for a day, two runs could be done per day and 21 days experimentation were

considered reasonable. The primary model proposed was the second order polynomial. Here we

compare four designs, two of them previously proposed, one by Trinca and Gilmour (2001), the

design being referred to here as SS, and the other by Goos (2002), referred to as D, a D-optimum

design for 1 ≤ η ≤ 10. The two other designs were constructed by the approach proposed in this

paper, MSSA (using AS) and MSSD (using DS). For these the treatment set for the whole-plots

stratum is the same as that used in Trinca and Gilmour (2001), i.e. three equally replicated levels,

which is DS- and AS-optimal. The new designs are shown in Table 1.

Properties of the designs, such as AS and DS values and efficiencies, for several values of η, are

plotted in Figures 1 and 2. Figure 2 shows that, for very small η values design D has the best and

design SS the worst performance, in terms of AS efficiency. As η increases design D becomes less

efficient. The newer designs (MSSA and MSSD) become more efficient for η larger than about 1.7.

In terms of the determinant, designs D, MSSA and MSSD have similar performances, design D

being better for the range of η studied with the efficiencies of the new designs ranging from about

94.0% to 98.7%. Table 2 shows the square root of the mean of expected variances for the model

parameter estimators averaged according to the type of effects. We note that using an exchange

algorithm in stratum 2 improves considerably the design compared with the SS approach that

fixed the treatment set to be a CCD. The D-optimal design penalizes the quadratic effects of

HS factors, but gives very good estimation of the corresponding linear effects, as usual. In terms

of predicting the responses, the new designs are clearly better than the D-optimal design and,

for larger values of the whole plot variance component, are also better than the original design

obtained by the old SS algorithm. For estimating differences in response, the new designs are

clearly the best. We also note that the MSS algorithm which uses AS is better than that which

uses DS.
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Table 1: Designs for Example 1 (21 whole plots with 2 subplots each) using the MSS approach,

AS and DS criterion

MSSA MSSD

W1 X1 X2 X3 X4

−1 −1 −1 −1 1

−1 1 −1 1 −1

−1 0 1 −1 1

−1 −1 −1 −1 −1

−1 0 1 1 0

−1 −1 1 −1 1

−1 −1 1 0 −1

−1 0 −1 1 1

−1 −1 1 1 1

−1 1 −1 −1 1

−1 1 0 1 1

−1 0 −1 0 −1

−1 −1 −1 1 −1

−1 1 0 −1 −1

0 −1 0 1 0

0 0 1 1 −1

0 0 0 −1 0

0 1 1 −1 −1

0 1 1 1 1

0 −1 −1 1 1

0 −1 1 −1 −1

0 1 −1 −1 0

W1 X1 X2 X3 X4

0 1 1 0 1

0 −1 1 1 −1

0 1 −1 0 1

0 0 0 −1 −1

0 1 1 −1 0

0 −1 0 0 1

1 1 0 −1 1

1 1 −1 1 0

1 1 1 1 −1

1 1 −1 1 1

1 −1 1 1 1

1 1 0 0 −1

1 −1 −1 0 0

1 1 −1 −1 −1

1 −1 1 −1 0

1 −1 −1 1 −1

1 −1 1 0 −1

1 −1 −1 −1 1

1 −1 −1 −1 −1

1 1 0 1 1

W1 X1 X2 X3 X4

−1 −1 −1 −1 1

−1 −1 1 1 −1

−1 1 −1 −1 1

−1 −1 −1 1 −1

−1 0 0 −1 −1

−1 1 −1 1 −1

−1 1 1 1 1

−1 1 −1 −1 −1

−1 1 −1 1 1

−1 −1 1 −1 1

−1 −1 1 1 1

−1 1 1 −1 −1

−1 1 1 1 0

−1 −1 −1 1 1

0 0 0 1 −1

0 −1 −1 0 0

0 −1 −1 −1 −1

0 0 0 0 0

0 1 1 −1 −1

0 −1 −1 0 −1

0 1 1 −1 1

0 1 0 0 −1

W1 X1 X2 X3 X4

0 1 0 0 1

0 0 −1 −1 0

0 1 0 −1 1

0 −1 1 −1 −1

0 0 1 0 1

0 −1 0 −1 0

1 1 1 1 −1

1 −1 1 −1 1

1 1 1 1 1

1 −1 −1 1 −1

1 1 1 −1 0

1 1 −1 1 1

1 −1 1 1 −1

1 1 −1 −1 −1

1 1 −1 −1 1

1 −1 1 1 1

1 −1 −1 1 1

1 −1 1 −1 −1

1 1 −1 1 0

1 −1 −1 −1 1

Table 2: Square root of mean of expected variances of parameter estimators and prediction per-

formances for alternative designs for Example 1 (21 whole plots of 2 subplots)

η Design Linear(HS) Quad.(HS) Linear(ES) Quad.(ES) Int.(HS×ES) Int.(ES) IV IDV

1 SS .3438 .6196 .2342 .5440 .3256 .2767 .5105 .4433

1 D .2932 .8264 .1950 .5370 .2016 .2305 .6551 .4148

1 MSSA .3467 .6165 .2063 .4812 .2431 .2400 .5582 .3959

1 MSSD .3346 .7131 .1984 .5701 .2251 .2259 .5850 .3964

10 SS .8745 1.5291 .2756 .6191 .3947 .3581 1.6909 1.2000

10 D .7658 2.0525 .2102 .5812 .2176 .2823 2.6157 1.3498

10 MSSA .8740 1.5237 .2263 .5306 .2632 .2719 1.6648 1.0566

10 MSSD .8694 1.5706 .2170 .6055 .2459 .2658 1.7084 1.0584

100 SS 2.6823 4.6512 .2875 .6380 .4156 .3911 12.0312 7.2564

100 D 2.3636 6.2629 .2134 .5919 .2211 .2979 21.3090 10.0358

100 MSSA 2.6819 4.6486 .2304 .5411 .2674 .2785 11.9670 7.0696

100 MSSD 2.6804 4.6648 .2211 .6136 .2505 .2752 12.0178 7.0737
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Figure 1: Expected AS and DS values, as functions of η, for alternative designs for Example 1.
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Figure 2: Expected AS and DS efficiencies, relative to design D, as functions of η, for alternative

designs for Example 1.
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4.2 Example 2 (7 HS and 4 ES factors, 20 whole plots with 5 subplots

each)

The second example compares alternative designs for the polypropylene experiment described in

Jones and Goos (2007). There are 7 two-level HS and 4 ES factors, 3 continuous and 1 a three-level

qualitative factor. The model includes linear main effects for all factors, quadratic effects for the 3

ES continuous factors and 50 two-factor interactions (only one of the HS factors, W1, is expected

to interact with the others). There was a constraint among two of the HS factors, W3 and W4,

which were not allowed to both appear at the highest level, and this was taken into account when

specifying the candidate set for the exchange algorithm. Jones and Goos (2007) compared two

designs for these factors in 20 whole plots of 5 subplots each, one constructed by the SS approach

(D criterion in each phase) and the other by the global D-optimum approach (η = 1). We found

two other designs for this experiment, MSSA and MSSD designs, which are shown in Tables 3 and

4. We compare the designs in Figures 3 and 4 and in Table 5. The new designs are better than

the older ones with respect to the AS criterion and even the old SS design is better for η > 10. We

note that even for η = 1 design MSSD outperforms design D. As can happen, especially for such

a large experiment, the optimization procedure failed to find the globally D-optimum design.
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Figure 3: Expected AS and DS values as functions of η for alternative designs for Example 2.
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Table 3: Design for Example 2 (20 whole plots with 5 subplots each) using the MSS approach and

the AS criterion

MSSA

W1 W2 W3 W4 W5 W6 W7 X1 X2 X3 X4

−1 −1 −1 −1 −1 1 −1 −1 0 0 B

−1 −1 −1 −1 −1 1 −1 −1 −1 −1 C

−1 −1 −1 −1 −1 1 −1 0 −1 1 A

−1 −1 −1 −1 −1 1 −1 1 1 −1 B

−1 −1 −1 −1 −1 1 −1 1 1 1 C

−1 −1 −1 −1 1 −1 1 −1 1 −1 A

−1 −1 −1 −1 1 −1 1 1 1 1 C

−1 −1 −1 −1 1 −1 1 −1 0 1 B

−1 −1 −1 −1 1 −1 1 1 0 1 A

−1 −1 −1 −1 1 −1 1 −1 −1 0 C

−1 −1 −1 1 1 −1 −1 −1 −1 −1 B

−1 −1 −1 1 1 −1 −1 0 1 1 B

−1 −1 −1 1 1 −1 −1 −1 0 1 C

−1 −1 −1 1 1 −1 −1 1 0 −1 C

−1 −1 −1 1 1 −1 −1 1 −1 1 A

−1 −1 1 −1 −1 −1 −1 0 1 −1 C

−1 −1 1 −1 −1 −1 −1 0 −1 1 C

−1 −1 1 −1 −1 −1 −1 1 0 0 B

−1 −1 1 −1 −1 −1 −1 1 1 −1 A

−1 −1 1 −1 −1 −1 −1 −1 −1 −1 A

−1 −1 1 −1 −1 1 1 1 1 −1 C

−1 −1 1 −1 −1 1 1 1 1 1 B

−1 −1 1 −1 −1 1 1 −1 1 1 A

−1 −1 1 −1 −1 1 1 −1 −1 1 C

−1 −1 1 −1 −1 1 1 0 −1 −1 A

−1 1 −1 −1 −1 −1 1 −1 −1 1 A

−1 1 −1 −1 −1 −1 1 1 1 1 B

−1 1 −1 −1 −1 −1 1 −1 1 −1 C

−1 1 −1 −1 −1 −1 1 1 −1 0 C

−1 1 −1 −1 −1 −1 1 0 −1 −1 B

−1 1 −1 1 −1 1 −1 1 0 1 B

−1 1 −1 1 −1 1 −1 −1 1 −1 A

−1 1 −1 1 −1 1 −1 1 −1 0 A

−1 1 −1 1 −1 1 −1 0 −1 1 C

−1 1 −1 1 −1 1 −1 0 1 −1 C

−1 1 −1 1 −1 −1 1 1 −1 −1 C

−1 1 −1 1 −1 −1 1 −1 1 1 C

−1 1 −1 1 −1 −1 1 1 1 −1 B

−1 1 −1 1 −1 −1 1 −1 −1 0 B

−1 1 −1 1 −1 −1 1 0 1 1 A

−1 1 1 −1 1 −1 −1 −1 −1 −1 C

−1 1 1 −1 1 −1 −1 −1 −1 1 A

−1 1 1 −1 1 −1 −1 1 −1 −1 B

−1 1 1 −1 1 −1 −1 1 1 1 C

−1 1 1 −1 1 −1 −1 −1 1 1 B

−1 1 1 −1 1 1 1 −1 1 −1 C

−1 1 1 −1 1 1 1 1 1 −1 B

−1 1 1 −1 1 1 1 1 0 −1 A

−1 1 1 −1 1 1 1 −1 −1 −1 B

−1 1 1 −1 1 1 1 1 −1 1 C

W1 W2 W3 W4 W5 W6 W7 X1 X2 X3 X4

−1 −1 −1 1 1 1 1 1 1 0 C

−1 −1 −1 1 1 1 1 −1 1 −1 B

−1 −1 −1 1 1 1 1 1 −1 1 B

−1 −1 −1 1 1 1 1 −1 −1 −1 C

−1 −1 −1 1 1 1 1 −1 0 1 A

−1 1 −1 −1 1 1 −1 1 1 1 A

−1 1 −1 −1 1 1 −1 −1 −1 −1 A

−1 1 −1 −1 1 1 −1 −1 1 1 C

−1 1 −1 −1 1 1 −1 1 −1 1 B

−1 1 −1 −1 1 1 −1 1 −1 −1 C

1 −1 −1 −1 −1 1 1 1 1 −1 C

1 −1 −1 −1 −1 1 1 −1 1 −1 A

1 −1 −1 −1 −1 1 1 0 −1 1 C

1 −1 −1 −1 −1 1 1 1 −1 −1 B

1 −1 −1 −1 −1 1 1 1 −1 1 B

1 −1 −1 −1 1 1 −1 1 1 1 B

1 −1 −1 −1 1 1 −1 −1 1 −1 C

1 −1 −1 −1 1 1 −1 −1 −1 0 B

1 −1 −1 −1 1 1 −1 1 1 −1 A

1 −1 −1 −1 1 1 −1 1 −1 1 C

1 −1 −1 1 1 −1 1 1 0 0 B

1 −1 −1 1 1 −1 1 1 1 −1 A

1 −1 −1 1 1 −1 1 −1 1 −1 C

1 −1 −1 1 1 −1 1 −1 −1 −1 A

1 −1 −1 1 1 −1 1 1 −1 1 C

1 −1 1 −1 −1 −1 −1 1 −1 −1 C

1 −1 1 −1 −1 −1 −1 −1 1 1 C

1 −1 1 −1 −1 −1 −1 −1 1 −1 B

1 −1 1 −1 −1 −1 −1 0 0 1 A

1 −1 1 −1 −1 −1 −1 −1 −1 1 B

1 1 −1 −1 −1 −1 1 0 0 1 C

1 1 −1 −1 −1 −1 1 −1 −1 −1 C

1 1 −1 −1 −1 −1 1 1 −1 1 B

1 1 −1 −1 −1 −1 1 1 0 −1 A

1 1 −1 −1 −1 −1 1 −1 1 0 B

1 1 −1 −1 1 −1 −1 1 −1 −1 A

1 1 −1 −1 1 −1 −1 −1 −1 1 C

1 1 −1 −1 1 −1 −1 −1 0 −1 B

1 1 −1 −1 1 −1 −1 1 1 −1 C

1 1 −1 −1 1 −1 −1 −1 1 1 A

1 1 −1 1 −1 1 −1 −1 −1 0 C

1 1 −1 1 −1 1 −1 −1 −1 1 A

1 1 −1 1 −1 1 −1 1 1 1 C

1 1 −1 1 −1 1 −1 −1 1 1 B

1 1 −1 1 −1 1 −1 1 −1 −1 B

1 1 1 −1 1 1 1 1 −1 1 A

1 1 1 −1 1 1 1 −1 1 1 C

1 1 1 −1 1 1 1 0 0 1 B

1 1 1 −1 1 1 1 −1 1 −1 A

1 1 1 −1 1 1 1 1 −1 −1 C
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Table 4: Design for Example 2 (20 whole plots with 5 subplots each) using the MSS approach and

the DS criterion

MSSD

W1 W2 W3 W4 W5 W6 W7 X1 X2 X3 X4

−1 −1 −1 −1 −1 1 −1 1 −1 0 C

−1 −1 −1 −1 −1 1 −1 1 1 −1 A

−1 −1 −1 −1 −1 1 −1 1 1 1 B

−1 −1 −1 −1 −1 1 −1 −1 0 −1 B

−1 −1 −1 −1 −1 1 −1 −1 −1 1 A

−1 −1 −1 −1 1 −1 1 −1 1 0 B

−1 −1 −1 −1 1 −1 1 −1 −1 1 C

−1 −1 −1 −1 1 −1 1 1 1 −1 C

−1 −1 −1 −1 1 −1 1 1 −1 1 B

−1 −1 −1 −1 1 −1 1 −1 −1 −1 A

−1 −1 −1 1 1 −1 −1 −1 0 1 A

−1 −1 −1 1 1 −1 −1 1 1 1 C

−1 −1 −1 1 1 −1 −1 −1 −1 1 B

−1 −1 −1 1 1 −1 −1 1 −1 −1 A

−1 −1 −1 1 1 −1 −1 −1 1 −1 C

−1 −1 −1 1 1 1 1 −1 1 −1 C

−1 −1 −1 1 1 1 1 1 −1 1 C

−1 −1 −1 1 1 1 1 1 1 0 A

−1 −1 −1 1 1 1 1 1 −1 −1 B

−1 −1 −1 1 1 1 1 −1 1 1 B

−1 −1 1 −1 −1 −1 −1 −1 −1 −1 A

−1 −1 1 −1 −1 −1 −1 −1 1 1 C

−1 −1 1 −1 −1 −1 −1 1 1 1 A

−1 −1 1 −1 −1 −1 −1 1 1 −1 B

−1 −1 1 −1 −1 −1 −1 1 −1 1 B

−1 −1 1 −1 −1 1 1 −1 1 0 A

−1 −1 1 −1 −1 1 1 1 −1 −1 A

−1 −1 1 −1 −1 1 1 1 1 1 C

−1 −1 1 −1 −1 1 1 0 −1 −1 C

−1 −1 1 −1 −1 1 1 −1 −1 1 B

−1 1 −1 −1 −1 −1 1 1 1 1 A

−1 1 −1 −1 −1 −1 1 1 −1 1 C

−1 1 −1 −1 −1 −1 1 1 −1 −1 B

−1 1 −1 −1 −1 −1 1 −1 −1 1 B

−1 1 −1 −1 −1 −1 1 −1 1 −1 C

−1 1 −1 −1 1 1 −1 −1 1 1 A

−1 1 −1 −1 1 1 −1 1 −1 −1 A

−1 1 −1 −1 1 1 −1 −1 −1 0 C

−1 1 −1 −1 1 1 −1 1 0 1 B

−1 1 −1 −1 1 1 −1 −1 1 −1 B

−1 1 −1 1 −1 1 −1 −1 −1 −1 B

−1 1 −1 1 −1 1 −1 −1 1 1 C

−1 1 −1 1 −1 1 −1 1 −1 1 A

−1 1 −1 1 −1 1 −1 0 1 −1 A

−1 1 −1 1 −1 1 −1 1 0 −1 C

−1 1 1 −1 1 −1 −1 1 −1 1 C

−1 1 1 −1 1 −1 −1 0 −1 −1 B

−1 1 1 −1 1 −1 −1 1 1 −1 C

−1 1 1 −1 1 −1 −1 −1 0 −1 A

−1 1 1 −1 1 −1 −1 −1 1 1 B

W1 W2 W3 W4 W5 W6 W7 X1 X2 X3 X4

−1 1 −1 1 −1 −1 1 −1 −1 0 A

−1 1 −1 1 −1 −1 1 −1 −1 1 C

−1 1 −1 1 −1 −1 1 1 1 −1 A

−1 1 −1 1 −1 −1 1 1 1 1 B

−1 1 −1 1 −1 −1 1 1 −1 −1 C

−1 1 1 −1 1 1 1 1 −1 1 B

−1 1 1 −1 1 1 1 −1 −1 −1 C

−1 1 1 −1 1 1 1 1 1 −1 B

−1 1 1 −1 1 1 1 −1 1 1 C

−1 1 1 −1 1 1 1 0 −1 1 A

1 −1 −1 −1 −1 −1 −1 1 −1 1 C

1 −1 −1 −1 −1 −1 −1 0 0 0 A

1 −1 −1 −1 −1 −1 −1 1 1 −1 C

1 −1 −1 −1 −1 −1 −1 −1 1 1 B

1 −1 −1 −1 −1 −1 −1 −1 −1 −1 B

1 −1 −1 −1 −1 1 1 1 0 1 A

1 −1 −1 −1 −1 1 1 −1 1 1 C

1 −1 −1 −1 −1 1 1 1 1 −1 B

1 −1 −1 −1 −1 1 1 −1 −1 −1 C

1 −1 −1 −1 −1 1 1 0 −1 1 B

1 −1 −1 1 1 1 −1 −1 −1 −1 A

1 −1 −1 1 1 1 −1 1 1 1 A

1 −1 −1 1 1 1 −1 −1 0 1 C

1 −1 −1 1 1 1 −1 1 1 −1 B

1 −1 −1 1 1 1 −1 1 −1 −1 C

1 −1 1 −1 1 −1 1 0 1 −1 A

1 −1 1 −1 1 −1 1 1 1 1 B

1 −1 1 −1 1 −1 1 −1 −1 −1 B

1 −1 1 −1 1 −1 1 1 −1 0 C

1 −1 1 −1 1 −1 1 −1 −1 1 A

1 1 −1 1 −1 −1 1 1 −1 −1 A

1 1 −1 1 −1 −1 1 1 1 0 C

1 1 −1 1 −1 −1 1 1 −1 1 B

1 1 −1 1 −1 −1 1 −1 1 1 A

1 1 −1 1 −1 −1 1 −1 1 −1 B

1 1 −1 −1 1 −1 −1 1 −1 1 A

1 1 −1 −1 1 −1 −1 −1 1 0 A

1 1 −1 −1 1 −1 −1 0 1 1 C

1 1 −1 −1 1 −1 −1 −1 −1 −1 C

1 1 −1 −1 1 −1 −1 1 1 −1 B

1 1 −1 −1 1 1 1 1 −1 1 C

1 1 −1 −1 1 1 1 −1 −1 1 B

1 1 −1 −1 1 1 1 1 1 1 A

1 1 −1 −1 1 1 1 −1 0 −1 A

1 1 −1 −1 1 1 1 0 1 −1 C

1 1 1 −1 −1 1 −1 1 −1 −1 B

1 1 1 −1 −1 1 −1 −1 −1 1 C

1 1 1 −1 −1 1 −1 −1 1 −1 C

1 1 1 −1 −1 1 −1 −1 1 1 B

1 1 1 −1 −1 1 −1 1 1 1 A
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Figure 4: Expected AS and DS efficiencies, relative to design D, as functions of η for alternative

designs for Example 2.

Table 5: Square root of mean of expected variances of parameter estimators and prediction per-

formances for alternative designs for Example 2

η Design Linear(HS) Int.(HS) Linear(ES) Quad.(ES) Int.(HS×ES) Int.(ES) IV IDV

1 SS .3402 .2981 .2771 .3470 .2291 .2402 .8915 .8113

1 D .3398 .2877 .2711 .4198 .2085 .2231 1.1102 .8038

1 MSSA .3135 .2760 .2667 .3794 .1957 .2111 .8571 .7099

1 MSSD .3296 .2736 .2904 .4136 .2021 .2188 1.0897 .7863

10 SS .8400 .8121 .2789 .3486 .2307 .2422 3.4585 2.5742

10 D .8555 .8272 .2724 .4227 .2093 .2239 3.6603 2.6481

10 MSSA .8292 .7894 .2669 .3815 .1960 .2116 3.5463 2.4518

10 MSSD .8355 .7885 .2916 .4147 .2024 .2198 3.6777 2.5299

100 SS 2.5687 2.5224 .2791 .3488 .2309 .2425 28.0430 20.1273

100 D 2.6254 2.5884 .2726 .4231 .2095 .2240 29.0780 21.0343

100 MSSA 2.5652 2.4682 .2669 .3818 .1960 .2117 29.3804 19.8479

100 MSSD 2.5673 2.4679 .2917 .4149 .2024 .2200 29.5116 19.9263
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Table 5 shows expected precisions for each type of effects as η increases. On average the new

designs are better to estimate almost all types of effects. Conversely, the new designs are not

so impressive in terms of IV -efficiency, although their advantage is clearer with respect to the

difference-based prediction criterion.

4.3 Example 3 (2 HS and 2 ES factors, 12 whole plots with 4 subplots

each)

Vining, Kowalski and Montgomery (2005) gave a second-order equivalent-estimation design (EE)

for 2 HS and 2 ES factors in 12 whole plots of size 4, based on the Box-Behnken treatment set.

Jones and Nachtsheim (2009) constructed a D optimum design (D) for the same problem. We

constructed the MSSA and MSSD designs shown in Table 6.

The performances of the four designs are presented in Figures 5 and 6 and in Table 7. Designs

MSSA and MSSD show very similar performances and are barely distinguishable in the graphs.

The graphs highlight the inefficiency of the equivalent-estimation design. The other three designs

have similar performances with some loss of efficiency of design D, with respect to the AS criterion,

for η > 0.7. The newer designs are slightly more efficient than the D-optimum design in terms of

variances and almost as efficient in terms of the determinant. Table 7 shows the low precision for

estimating all effects of the EE design, except quadratic effects of the HS factors. Again we find

that the new designs outperform all others in terms of predicting differences in response and are

competitive in terms of predicting the response.

4.4 Example 4 (3 HS and 3 ES factors, 12 whole plots with 4 subplots

each)

Macharia and Goos (2010) found that some D-optimum designs also satisfy the equivalent-

estimation property and that for a given structure there can be many equivalent-estimation designs,

some of them with high efficiency in terms of the D criterion. They compared D-optimal designs

(considering η = 1) and D-efficient equivalent-estimation designs (EED) for several structures

including the situation with 3 HS and 3 ES factors in 12 whole plots with 4 subplots each. Here

we compare their designs and AS and DS optimal designs obtained by the MSS approach. The
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Table 6: Designs for Example 3 (2 HS and 2 ES factors, 12 whole plots with 4 subplots each)

using the MSS approach, AS and DS criteria

MSSA MSSD

W1 W2 X1 X2

−1 −1 −1 −1

−1 −1 −1 1

−1 −1 1 −1

−1 −1 1 1

−1 −1 −1 0

−1 −1 0 1

−1 −1 1 1

−1 −1 1 −1

−1 0 −1 −1

−1 0 0 0

−1 0 1 −1

−1 0 1 1

−1 1 −1 −1

−1 1 −1 1

−1 1 1 −1

−1 1 1 1

−1 1 −1 −1

−1 1 −1 1

−1 1 0 −1

−1 1 1 0

0 −1 −1 −1

0 −1 −1 1

0 −1 0 −1

0 −1 1 0

W1 W2 X1 X2

0 0 −1 0

0 0 0 0

0 0 0 1

0 0 1 −1

0 1 −1 −1

0 1 −1 1

0 1 0 0

0 1 1 1

1 −1 −1 −1

1 −1 −1 1

1 −1 1 −1

1 −1 1 1

1 0 −1 −1

1 0 −1 1

1 0 0 −1

1 0 1 0

1 1 −1 −1

1 1 −1 1

1 1 1 −1

1 1 1 1

1 1 −1 0

1 1 0 1

1 1 1 −1

1 1 1 1

W1 W2 X1 X2

−1 −1 −1 −1

−1 −1 −1 1

−1 −1 0 −1

−1 −1 1 0

−1 −1 −1 −1

−1 −1 −1 1

−1 −1 1 −1

−1 −1 1 1

−1 0 −1 0

−1 0 1 −1

−1 0 1 1

−1 0 0 1

−1 1 −1 −1

−1 1 −1 1

−1 1 1 −1

−1 1 1 1

−1 1 −1 −1

−1 1 1 −1

−1 1 −1 1

−1 1 1 1

0 −1 −1 −1

0 −1 −1 1

0 −1 0 0

0 −1 1 1

W1 W2 X1 X2

0 0 −1 0

0 0 0 0

0 0 0 1

0 0 1 −1

0 1 −1 −1

0 1 −1 1

0 1 0 0

0 1 1 1

1 −1 −1 −1

1 −1 −1 1

1 −1 1 −1

1 −1 1 1

1 0 −1 0

1 0 1 −1

1 0 0 1

1 0 1 1

1 1 −1 −1

1 1 −1 1

1 1 0 −1

1 1 1 0

1 1 −1 −1

1 1 −1 1

1 1 1 −1

1 1 1 1

Table 7: Square root of mean of expected variances of parameter estimators and prediction per-

formances for alternative designs for Example 3

η Design Linear(HS) Quad.(HS) Int.(HS) Linear(ES) Quad.(ES) Int.(HS×ES) Int.(ES) IV IDV

1 EE .4564 .6972 .5590 .2887 .5833 .5000 .5000 .7079 .7773

1 D .3539 .8912 .3963 .1619 .4062 .1758 .1735 1.1825 .5363

1 MSSA .3849 .7627 .4384 .1650 .3983 .1848 .1764 .7208 .4161

1 MSSD .3845 .7653 .4392 .1636 .4272 .1810 .1709 .7235 .4190

10 EE 1.3070 1.9965 1.6008 .2887 1.5298 .5000 .5000 4.3245 4.8940

10 D 1.0125 2.5336 1.1323 .1626 .4091 .1760 .1737 8.9095 3.7627

10 MSSA 1.0998 2.1629 1.2528 .1654 .4004 .1852 .1767 5.2606 2.8264

10 MSSD 1.0997 2.1638 1.2531 .1638 .4286 .1814 .1711 5.2630 2.8290

100 EE 4.0876 6.2439 5.0062 .2887 4.7266 .5000 .5000 40.4912 46.0607

100 D 3.1663 7.9164 3.5401 .1627 .4095 .1760 .1737 86.1598 36.0129

100 MSSA 3.4387 6.7558 3.9170 .1654 .4006 .1852 .1768 50.6486 26.9215

100 MSSD 3.4386 6.7561 3.9171 .1639 .4288 .1815 .1712 50.6510 26.9241
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Figure 5: Expected AS and DS values as functions of η for alternative designs for Example 3.

0 20 40 60 80 100

0.4
0.6

0.8
1.0

η

A S E
ffic

ien
cy

EE
MSSA

MSSD

0 20 40 60 80 100

0.4
0.6

0.8
1.0

η

D S E
ffic

ien
cy

EE
MSSA

MSSD

Figure 6: Expected AS and DS efficiencies, relative to design D, as functions of η for alternative

designs for Example 3.
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new designs are given in Table 8 and Figures 7 and 8 compare the performances of the designs.

In terms of AS values designs D, MSSA and MSSD have almost the same performance, though for

very small η the D-optimum design is slightly more efficient. In terms of DS values, both MSSA

and MSSD designs also perform very similarly to design D and do somewhat better in terms of

prediction criteria - see Table 9. The D-efficient equivalent-estimation design (EED) is clearly

poor in terms of both AS and DS values, as well as the prediction criteria.
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Figure 7: Expected AS and DS values as functions of η for alternative designs for Example 4.

4.5 Example 5 (2 VHS, 1 HS and 3 ES factors, 8 whole plots with 2

subplots each, each with 2 sub-subplots each)

In this example we consider the design problem with three strata presented in Jones and Goos

(2009). The model has linear main effects and two-factor interactions with 2 VHS, 1 HS and 3 ES

factors. The unit structure is 8 whole plots, each with 2 subplots with 2 sub-subplots each. Jones

and Goos (2009) constructed a D-optimum design fixing η1 = η2 = 1. As the number of in each

stratum is a power of 2 and the model is supported by a two-level factorial, they also presented

an alternative design constructed by fractionating and aliasing high order terms. In this case our

approach resulted in the same design for A and D criteria (Table 10).
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Table 8: Designs for Example 4 (3 HS and 3 ES factors, 12 whole plots with 4 subplots each)

using the MSS approach, AS and DS criteria

MSSA MSSD

W1 W2 W3 X1 X2 X3

−1 −1 −1 −1 −1 1

−1 −1 −1 −1 1 −1

−1 −1 −1 1 −1 −1

−1 −1 −1 1 1 1

−1 −1 1 −1 1 0

−1 −1 1 0 −1 −1

−1 −1 1 1 −1 1

−1 −1 1 1 0 −1

−1 0 1 −1 0 −1

−1 0 1 −1 0 1

−1 0 1 0 −1 0

−1 0 1 1 1 0

−1 1 −1 −1 −1 1

−1 1 −1 −1 1 −1

−1 1 −1 1 −1 −1

−1 1 −1 1 1 1

−1 1 1 −1 −1 −1

−1 1 1 −1 1 1

−1 1 1 1 −1 1

−1 1 1 1 1 −1

0 0 −1 −1 −1 −1

0 0 −1 −1 1 1

0 0 −1 0 1 0

0 0 −1 1 0 0

0 −1 0 −1 −1 0

0 −1 0 1 −1 0

0 −1 0 1 1 −1

0 −1 0 0 0 1

1 −1 −1 −1 1 1

1 −1 −1 0 0 −1

1 −1 −1 1 −1 1

1 −1 −1 1 1 −1

1 −1 1 −1 −1 1

1 −1 1 −1 1 −1

1 −1 1 1 −1 −1

1 −1 1 1 1 1

1 0 0 −1 −1 −1

1 0 0 −1 1 1

1 0 0 0 −1 1

1 0 0 1 0 0

1 1 −1 −1 0 0

1 1 −1 0 −1 −1

1 1 −1 1 −1 1

1 1 −1 1 1 −1

1 1 1 −1 −1 1

1 1 1 −1 1 −1

1 1 1 1 −1 −1

1 1 1 1 1 1

W1 W2 W3 X1 X2 X3

−1 −1 −1 −1 −1 −1

−1 −1 −1 −1 1 1

−1 −1 −1 1 −1 1

−1 −1 −1 1 1 −1

−1 −1 1 −1 0 1

−1 −1 1 0 1 −1

−1 −1 1 1 −1 0

−1 −1 1 1 1 1

−1 0 0 −1 −1 0

−1 0 0 −1 1 0

−1 0 0 0 0 1

−1 0 0 1 −1 −1

−1 1 −1 −1 −1 1

−1 1 −1 −1 1 −1

−1 1 −1 1 −1 −1

−1 1 −1 1 1 1

−1 1 1 −1 −1 −1

−1 1 1 −1 1 1

−1 1 1 1 −1 1

−1 1 1 1 1 −1

0 −1 0 −1 −1 1

0 −1 0 −1 1 −1

0 −1 0 0 −1 −1

0 −1 0 1 0 0

0 0 −1 −1 1 1

0 0 −1 0 0 0

0 0 −1 1 −1 1

0 0 −1 1 1 −1

0 0 1 −1 0 −1

0 0 1 0 −1 1

0 0 1 0 1 0

0 0 1 1 0 −1

1 −1 −1 −1 −1 −1

1 −1 −1 −1 1 1

1 −1 −1 1 −1 1

1 −1 −1 1 1 −1

1 −1 1 −1 −1 1

1 −1 1 −1 1 −1

1 −1 1 1 −1 −1

1 −1 1 1 1 1

1 1 −1 1 −1 −1

1 1 −1 1 1 1

1 1 −1 −1 1 −1

1 1 −1 −1 −1 1

1 1 1 −1 1 1

1 1 1 1 −1 1

1 1 1 −1 −1 −1

1 1 1 1 1 −1
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Figure 8: Expected AS and DS efficiencies, relative to design D, as functions of η for alternative

designs for Example 4.

Table 9: Square root of mean of expected variances of parameter estimators and prediction per-

formances for alternative designs for Example 4

η Design Linear(HS) Quad.(HS) Int.(HS) Linear(ES) Quad.(ES) Int.(HS×ES) Int.(ES) IV IDV

1 EED .5142 1.1202 .5387 .1609 .4920 .1793 .1713 1.4241 1.0722

1 D .3813 .9650 .3941 .1571 .5019 .1724 .1654 1.1718 .7790

1 MSSA .3811 .9674 .3960 .1634 .4416 .1774 .1763 1.0839 .7511

1 MSSB .3835 .9621 .3966 .1579 .5150 .1737 .1655 1.0711 .7479

10 EED 1.4627 3.1803 1.5338 .1609 .4920 .1793 .1713 9.8491 7.4816

10 D 1.0869 2.7418 1.1232 .1573 .5033 .1725 .1655 7.4467 5.0279

10 MSSA 1.0868 2.7426 1.1239 .1635 .4424 .1776 .1765 7.3569 4.9986

10 MSSD 1.0941 2.7193 1.1324 .1581 .5158 .1738 .1655 6.9721 4.8672

100 EED 4.5705 9.9352 4.7935 .1609 .4920 .1793 .1713 94.0991 71.5753

100 D 3.3972 8.5660 3.5106 .1573 .5034 .1725 .1655 70.1658 47.4961

100 MSSA 3.3971 8.5663 3.5108 .1635 .4425 .1776 .1766 70.0758 47.4674

100 MSSD 3.4201 8.4901 3.5401 .1581 .5159 .1738 .1655 65.9723 46.0547
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Table 10: Design for Example 5 (2 VHS, 1 HS and 3 ES factors, 8 whole plots with 2 subplots

with 2 sub-subplots each) using the MSS approach, AS and DS criteria

MSSA and MSSD

W1 W2 S1 X1 X2 X3

−1 −1 −1 −1 1 1

−1 −1 −1 1 −1 1

−1 −1 1 −1 −1 −1

−1 −1 1 1 1 −1

−1 −1 −1 −1 −1 1

−1 −1 −1 1 −1 −1

−1 −1 1 −1 1 −1

−1 −1 1 1 1 1

−1 1 −1 −1 −1 1

−1 1 −1 −1 1 −1

−1 1 1 1 −1 1

−1 1 1 1 1 −1

−1 1 −1 −1 −1 −1

−1 1 −1 1 1 1

−1 1 1 −1 1 1

−1 1 1 1 −1 −1

W1 W2 S1 X1 X2 X3

1 −1 −1 −1 −1 1

1 −1 −1 1 1 1

1 −1 1 −1 1 −1

1 −1 1 1 −1 −1

1 −1 −1 −1 −1 −1

1 −1 −1 1 −1 1

1 −1 1 −1 1 1

1 −1 1 1 1 −1

1 1 −1 1 −1 1

1 1 −1 1 1 −1

1 1 1 −1 −1 −1

1 1 1 1 1 1

1 1 −1 −1 1 1

1 1 −1 1 −1 −1

1 1 1 −1 −1 1

1 1 1 −1 1 −1

Table 11: Square root of mean of expected variances of parameter estimators (L: linear effects; I:

two-factor interactions) and prediction performances for alternative designs for Example 5

η1 η2 Design L(VHS) I(VHS) L(HS) I(VHS×HS) L(ES) I(VHS×ES) I(HS×ES) I(ES) IV IDV

1 1 D .4677 .4677 .3062 .3062 .1863 .1863 .1846 .2829 .5369 .3181

1 1 MSS .4732 .4711 .3345 .3305 .2064 .2042 .2214 .2512 .5691 .3432

1 10 D .8839 .8839 .8101 .8101 .1998 .1998 .1858 .5407 1.9290 1.1478

1 10 MSS .8870 .8858 .8213 .8202 .2146 .2170 .2286 .3145 1.9028 1.1139

1 100 D 2.5311 2.5311 2.5062 2.5062 .2036 .2036 .1863 1.4751 15.6844 9.2781

1 100 MSS 2.5322 2.5317 2.5099 2.5096 .2163 .2206 .2305 .3355 15.0347 8.6207

100 1 D 3.5488 3.5488 .3062 .3062 .1863 .1863 .1863 .2955 22.5395 9.9458

100 1 MSS 3.5495 3.5492 .3345 .3309 .2072 .2050 .2245 .2577 22.5716 9.9705

100 10 D 3.6272 3.6272 .8101 .8101 .1998 .1998 .1863 .5443 23.9304 10.7741

100 10 MSS 3.6279 3.6276 .8213 .8203 .2148 .2173 .2296 .3177 23.9039 10.7399

100 100 D 4.3337 4.3337 2.5062 2.5062 .2036 .2036 .1863 1.4752 37.6846 18.9033

100 100 MSS 4.3344 4.3341 2.5099 2.5096 .2163 .2207 .2306 .3358 37.0348 18.2458
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The efficiencies of the MSS design relative to the globally D optimum design of Jones and Goos

(2009), design D, are shown in Figure 9. In the plots, σ2 (the third stratum variance) is fixed to be

1 and σ2
2 (the second stratum variance component) and σ2

1 (the first stratum variance component)

are varied. For very small values of the variance ratios the new design is less efficient than design

D but it becomes more efficient as the ratios increase. We note that, with respect to D efficiencies,

both designs (the globally D-optimum and the MSS design) are robust to changes in σ2
1, especially

when σ2
2 is large. Jones and Goos (2009) also noted the robustness of D-optimum designs for

changes in σ2
1. Although the two designs show similar performances in terms of efficiencies, design

D has one interaction term between the ES factors that is fully estimated in stratum 2. Our

design distributed the loss of information among all terms and thus none of the terms is sacrificed

as shown in Table 11. It should be noted that the alternative design of Jones and Goos (2009),

constructed by fractionating and aliasing terms, has two interactions of ES factors fully estimated

in stratum 2 and one in stratum 1. Our new design also improves on the old one in terms of

prediction variances, except when the ratios of variance components are small.

4.6 Example 6 (2 HS and 2 ES factors, 5 blocks with 3 whole plots

each, each with 3 subplots)

In this last example we re-design the experiment for the blocked split-plot structure presented in

Trinca and Gilmour (2001). This is aimed at a response surface model for 2 HS and 2 ES factors.

In the first stratum there are 5 units (blocks) to which no factors are applied. In the second

stratum each block has 3 whole plots and 2 HS factors are to be applied. In the third stratum

each whole plot is divided into three subplots and the 2 ES factors are to be applied. In this

case the design to start with is a blocked design for the whole plots and this example is aimed at

showing the flexibility of our methodology. The designs we constructed are shown in Table 12.

Note that although in the third stratum the number of units would allow 5 replicates of the 32, it

is not that treatment set that comes out of the search, no matter which criterion is used.

The DS-efficiency based on the previous design (Figure 10) shows that the new designs are

more efficient for a wide range of variance component values with the gain being up to around

10%. Very similar plots are obtained for MSSA. Table 13 shows that very little information comes

from the highest stratum (inter-block information) no matter what are the sizes of the variance
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Figure 9: Expected AS and DS efficiencies, relative to design D, of design MSS (A and D criterion)

for Example 5, as functions of σ2
1 and σ2

2 (fixing σ2 = 1).
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Table 12: Designs for Example 6 (2 HS and 2 ES factors, 5 blocks with 3 whole plots each, each

with 3 subplots) using the MSS approach, AS and DS criteria

MSSA MSSD

W1 W2 X1 X2

−1 0 −1 1

−1 0 0 −1

−1 0 1 0

0 −1 −1 −1

0 −1 0 1

0 −1 1 −1

1 1 −1 −1

1 1 0 1

1 1 1 −1

−1 −1 −1 −1

−1 −1 −1 1

−1 −1 1 0

−1 1 −1 0

−1 1 1 −1

−1 1 1 1

1 0 −1 −1

1 0 0 1

1 0 1 −1

−1 −1 −1 −1

−1 −1 0 1

−1 −1 1 −1

0 1 −1 0

0 1 0 −1

0 1 1 1

1 −1 −1 0

1 −1 1 −1

1 −1 1 1

W1 W2 X1 X2

−1 1 −1 −1

−1 1 0 1

−1 1 1 −1

0 0 −1 1

0 0 0 0

0 0 1 1

1 1 −1 −1

1 1 −1 1

1 1 1 0

−1 0 −1 0

−1 0 0 −1

−1 0 1 1

0 1 −1 1

0 1 0 −1

0 1 1 0

1 −1 −1 1

1 −1 0 −1

1 −1 1 1

W1 W2 X1 X2

−1 −1 −1 −1

−1 −1 −1 1

−1 −1 1 0

−1 1 −1 −1

−1 1 −1 1

−1 1 1 0

0 0 0 0

0 0 1 −1

0 0 1 1

−1 −1 −1 −1

−1 −1 0 1

−1 −1 1 −1

0 1 −1 0

0 1 0 1

0 1 1 −1

1 0 −1 1

1 0 0 −1

1 0 1 1

−1 1 −1 1

−1 1 0 −1

−1 1 1 1

0 −1 −1 1

0 −1 0 −1

0 −1 1 1

1 1 −1 −1

1 1 0 1

1 1 1 −1

W1 W2 X1 X2

−1 0 −1 −1

−1 0 0 0

−1 0 1 1

1 −1 −1 0

1 −1 1 −1

1 −1 1 1

1 1 −1 −1

1 1 −1 1

1 1 1 0

−1 0 −1 0

−1 0 0 1

−1 0 1 −1

0 1 −1 0

0 1 0 −1

0 1 1 1

1 −1 −1 −1

1 −1 −1 1

1 −1 1 0

components. In the original design (SS) that was also true for most of the effects, but not the

interaction between the HS factors.

5 Discussion

We have modified the stratum-stratum method of construction of multi-stratum response sur-

face designs and compared it with several other approaches from the literature. The procedure

produces efficient designs that are competitive with other popular designs. The step-by-step de-

sign construction makes the method quite attractive due to its direct application to designing

experiments for any number of strata. The same program code can be run sequentially, once for

each stratum, as long as the entries are correctly specified. The step-by-step approach does not

experience the problems with storage of large candidate treatment sets and thus the usual point
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Figure 10: Expected AS and DS efficiencies, relative to design presented in Trinca and Gilmour

(2001), of design MSSD for Example 6, as functions of σ2
1 and σ2

2 (fixing σ2 = 1).
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Table 13: Square root of mean of expected variances of parameter estimators and prediction

performances for alternative designs for Example 6

η1 η2 Design L(HS) Q(HS) I(HS) L(ES) Q(ES) I(HS×ES) I(ES) IV IDV

1 1 SS .3651 .6967 .5288 .1826 .3162 .2247 .2886 .7161 .3637

1 1 MSSA .3666 .7082 .4224 .1751 .3871 .1999 .2007 .8806 .4028

1 1 MSSD .3659 .7093 .4218 .1752 .3839 .2002 .2002 .8746 .3992

1 10 SS 1.0165 1.9239 1.2194 .1826 .3162 .2247 .3120 3.4806 2.0996

1 10 MSSA .9922 1.9165 1.1480 .1758 .3913 .2004 .2017 3.5659 2.3707

1 10 MSSB .9919 1.9170 1.1478 .1759 .3884 .2008 .2017 4.5410 2.3672

1 100 SS 3.1675 5.9870 3.5718 .1826 .3162 .2247 .3158 31.0190 19.3523

1 100 MSSA 3.0623 5.9133 3.5459 .1760 .3920 .2005 .2018 41.0772 21.8088

1 100 MSSB 3.0622 5.9134 3.5459 .1760 .3891 .2009 .2020 41.0727 21.8054

100 1 SS .3651 .6968 .6308 .1826 .3162 .2247 .2895 20.5393 .3769

100 1 MSSA .3730 .7202 .4281 .1752 .3875 .2000 .2008 20.6939 .4087

100 1 MSSD .3722 .7212 .4274 .1753 .3844 .2003 .2004 20.6879 .4157

100 10 SS 1.0165 1.9239 1.7211 .1826 .3162 .2247 .3123 23.4496 2.2636

100 10 MSSA 1.0314 1.9923 1.1859 .1759 .3914 .2004 .2017 24.5935 2.5327

100 10 MSSB 1.0311 1.9926 1.1857 .1760 .3885 .2008 .2018 24.5945 2.5291

100 100 SS 3.1675 5.9870 4.7204 .1826 .3162 .2247 .3158 51.8772 20.4105

100 100 MSSA 3.1723 6.1296 3.6577 .1760 .3920 .2005 .2018 62.8964 23.2342

100 100 MSSB 3.1722 6.1298 3.6576 .1761 .3891 .2009 .2020 62.9371 23.2307

exchange algorithm is used. However the approach can also be used with the coordinate exchange

algorithm of Jones and Goos (2007). As the construction basis is a blocked design in each stratum,

the updating formulae of Cook and Nachtsheim (1989) can be used to speed the search. Another

important practical advantage is that it does not require prior estimates of variance component

ratios.

Although the examples show that globally optimum designs for fixed η are quite robust to the

variance component ratios, this method does not share the generality of the stratum-by-stratum

approach. Typically, a new algorithm is needed for each different multi-stratum structure (split-

plot, split-split plot, split-plot with blocks, etc.). The advantages of designs constructed using

the modified stratum-by-stratum approach for prediction properties was not anticipated and is
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not immediately easy to explain. The IV criterion concentrates on estimating the intercept and

therefore, in completely randomized structures, concentrates points near the centre of the design.

Consequently, designs with many points near the centre, such as those obtained from classical

designs using the original SS approach, tend to do well in terms of this criterion. However, it is

not obvious that the MSS approach gives any more points near the centre than the single stage

D-optimal designs have. A possible explanation is that prediction at every point, whether of the

response or differences in response, depends on all parameters and therefore those estimated in

higher strata have more impact, especially when the variance components are large. In contrast, in

the D criterion (and more obviously in the A criterion), the poor estimation of a few effects in high

strata are swamped by good estimation of many effects in low strata. For prediction, therefore, by

far the most important thing is precise estimation in the higher strata. By optimizing this first,

the MSS algorithm achieves exactly what is needed.

We believe that, along with other algorithms, the stratum-by-stratum approach deserves a

place in the experimental designer’s toolbox and should be seriously considered for producing

designs for any experiment which involves factors which are hard to set.

References

Atkinson, A. C., Donev, A. N. and Tobias, R. D. (2007). Optimum Experimental Designs, with

SAS. Oxford: Oxford University Press.

Bingham, D. and Sitter, R. R. (1999). Minimum-aberration two-level fractional factorial split-plot

designs. Technometrics, 41, 62–70.

Cheng, C.-S. and Tsai, P.-W. (2009). Optimal two-level regular fractional factorial block and

split-plot designs. Biometrika, 96, 83–93.

Cook, R. D. and Nachtsheim, C. J. (1989). Computer-aided blocking of factorial and response

surface designs. Technometrics, 31, 339–46.

Draper, N. R. and John, J. A. (1998). Response surface designs where levels of some factors are

difficult to change. Australian and New Zealand Journal of Statistics, 40, 487–495.

28

Page 28 of 30Technometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Gilmour, S. G. and Goos, P. (2009). Analysis of data from nonorthogonal multi-stratum designs

in industrial experiments. Applied Statistics, 58, 467–484.

Goos, P. (2002). The Optimal Design of Blocked and Split-Plot Experiments. New York: Springer.

Goos, P. and Donev, A. N. (2007). Tailor-made split-plot designs with mixture and process

variables. Journal of Quality Technology, 39, 326–339.

Goos, P. and Vandebroek, M. (2003). D-optimal split-plot designs with given numbers and sizes

of whole plots. Technometrics, 45, 235–245.

Hardin, R. H. and Sloane, N. J. A. (1993) A new approach to the construction of optimal designs.

Journal of Statistical Planning and Inference, 37, 339–369.

Huang, P., Chen, D. and Voelkel, J. O. (1998). Minimum-aberration two-level split-plot designs.

Technometrics, 40, 314–326.

Jones, B. and Goos, P. (2007). A candidate-set-free algorithm for generating D-optimal split-plot

designs. Applied Statistics, 56, 347–364.

Jones, B. and Goos, P. (2009). D-optimal design of split-split-plot experiments. Biometrika, 96,

67–82.

Jones, B. and Nachtsheim, C. (2009). Split-plot designs: what, why, and how. Journal of Quality

Technology, 41, 340–361.

Letsinger, J. D., Myers, R. H. and Lentner, M. (1996). Response surface methods for bi-

randomization structures. Journal of Quality Technology, 28, 381–397.

Macharia, H. and Goos, P. (2010). D-optimal and D-efficient equivalent-estimation second-order

split-plot designs. Journal of Quality Technology, 42, 358–372.

Parker, P. A., Kowalski, S. M. and Vining, G. G. (2007). Construction of balanced equivalent

estimation second-order split-plot designs. Technometrics, 49, 56–65.

Trinca, L. A. and Gilmour, S. G. (1999). Difference variance dispersion graphs for comparing

response surface designs with applications in food technology. Applied Statistics, 48, 441–455.

29

Page 29 of 30 Technometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Trinca, L. A. and Gilmour, S. G. (2001). Multi-stratum response surface designs. Technometrics,

43, 25–33.

Vining, G. G., Kowalski, S. M. and Montgomery, D. C. (2005) Response surface designs within a

split-plot structure. Journal of Quality Technology, 37, 115–129.

30

Page 30 of 30Technometrics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


