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SUMMARY

In industrial experimentation, there is growing interest in studies that span more than one
processing step. Convenience often dictates restrictions in randomization in passing from one
processing step to another. When the study encompasses three processing steps, this leads to
split-split-plot designs. We provide an algorithm for computing D-optimal split-split-plot designs
and several illustrative examples.
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1. INTRODUCTION

Split-plot designs are commonplace in industrial applications because there are often system
level, set-up or processing factors that are difficult, expensive or time-consuming to change
between successive processing runs. When this happens there is a natural inclination to perform
all the runs of a particular level combination of such hard-to-change factors in succession. Such
an ordering of the runs is clearly not random and many completely randomized designs have
been reordered after the randomization to become split-plot designs inadvertently. Clearly it is
preferable to design the few changes of the hard-to-change factors rather than to discover an after
the fact run reordering or, even worse, fail to notice the reordering at all. Including this grouping
of runs as a part of the design problem allows the researcher to maximize the information obtained
about the statistical model given this restriction in randomization. Webb et al. (2004) have shown
the cost in efficiency due to inadvertent split plotting.

The split-plot structure divides the experimental runs into two strata. The top stratum contains
the whole plots. A whole plot is a group of runs where the hard-to-change factor combinations
remain constant. The lower stratum contains the individual subplot runs.

The practical need for more than two strata in a design arises when experimenting on processes
with multiple steps or stages. If the experimental units can be reordered between stages, then a
split-lot or strip-plot design results; see for example Mee & Bates (1998). In many cases, it is
either too complicated or even impossible to reorder the experimental units between strata. This
leads to the split-split-plot design structure.

Schoen (1999) provides an example of multi-stage processing, leading to a split-split-plot
design in his case study involving the production of cheese. Cheese processing starts with milk
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storage. Typically milk from one storage facility provides the raw material for several curds
processing units, the second processing stage. Then the curds are further processed to yield
individual cheeses.

Split-split-plot designs are a three-stratum extension of split-plot designs. They divide into
whole plots, subplots within whole plots and individual runs within each subplot. The top stratum
remains the whole-plot stratum. Over the course of the experiment, the whole-plot or very-
hard-to-change factors’ levels are changed the fewest times. The levels of subplot factors or
hard-to-change factors are changed more frequently. Also the levels of these factors must change
whenever the whole-plot factor levels change in order to preserve the nested unit structure that
characterizes the split-split-plot design. The sub-subplot factors or easy-to-change factors should
be reset between each run regardless of whether their level changes.

Typically, the number of subplots is an integer multiple of the number of whole plots and the
total number of runs is an integer multiple of the number of subplots. In this article, we assume
this kind of structure, although it is not a requirement in general.

The extension from two-stratum to three-stratum experiments is not trivial. There is little
literature on the design of such studies. Edmondson (1991) pointed out that various levels of
splitting experimental plots or units are often required in agricultural and horticultural studies,
but did not go beyond split-plot designs, with one level of splitting, in his article. Trinca & Gilmour
(2001) considered the design and analysis of multi-stratum experiments including non-orthogonal
designs. Their design approach attempts to orthogonalize each stratum of the design as much
as possible with respect to the higher strata. Schoen (1999) constructed an orthogonal two-level
split-split-plot design by joining fractional factorial designs in order to create the desired nesting
structure. Brien & Bailey (2006) provided a diagrammatic method for describing complex nesting
and crossed structures with many practical examples.

This article describes an algorithm for creating D-optimal split-split-plot designs and provides
several specific examples of these designs to demonstrate their utility for screening experimen-
tation. It builds on Goos (2002, 2006) who introduced an optimal design approach to construct
split-plot designs and provided algorithms for finding optimal split-plot designs that exchange
points from a starting design with points from a candidate set, and on Jones & Goos (2007),
who showed how to avoid the construction of a candidate set in the search for optimal split-plot
designs. Their candidate-set-free algorithm runs in polynomial time in the number of factors
thus allowing the construction of designs with many more factors and runs than was previously
feasible.

2. MODEL AND DESIGN CRITERION

For a split-split-plot experiment with b1 whole plots, b2 subplots per whole plot and k runs per
subplot, and thus sample size n = b1b2k, the model can be written as

Y = Xβ + Z1γ1 + Z2γ2 + ε, (1)

where Y is the n-dimensional vector of the responses arranged per whole plot and per subplot,
X represents the n × p model matrix containing the settings of the very-hard-to-change factors,
w, the hard-to-change factors, s, the easy-to-change factors, t , their model expansions, β is a
p-dimensional vector containing the p fixed effects in the model, and Z1 = Ib1 ⊗ 1b2k is an
n × b1 matrix of zeroes and ones. A one in row j of column i of Z1 means that run j is in the i th
whole plot. Furthermore, Z2 = Ib1 ⊗ Ib2 ⊗ 1k = Ib1b2 ⊗ 1k is an n × b1b2 matrix of zeroes and
ones indicating how the n runs have been assigned to the b2 subplots within each of the b1 whole
plots. The b1- and b1b2-dimensional vectors γ1 and γ2 are the random effects associated with the
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whole plots and the subplots, respectively. Finally, ε is the n-dimensional vector containing the
random errors. It is assumed that

E(ε) = 0n, cov(ε) = σ 2
ε In , (2)

E(γ1) = 0b1, cov(γ1) = σ 2
γ1

Ib1 , (3)

E(γ2) = 0b1b2, cov(γ2) = σ 2
γ2

Ib1b2 , (4)

and

cov(γ1, ε) = 0b1×n, cov(γ2, ε) = 0b1b2×n, cov(γ1, γ2) = 0b1×b1b2 . (5)

The variances σ 2
γ1

, σ 2
γ2

and σ 2
ε in these expressions are referred to as the whole-plot variance,

the subplot variance and the error variance, respectively. Under the assumptions (2)–(5), the
covariance matrix of the responses, var(Y ), is

V = σ 2
ε In + σ 2

γ1
Z1 Z ′

1 + σ 2
γ2

Z2 Z ′
2. (6)

This matrix is of the form V = diag(V1, . . . , Vb1), where each

Vi = σ 2
ε Ib2k + σ 2

γ1
1b2k1′

b2k + σ 2
γ2

(
Ib2 ⊗ 1k1′

k

) = σ 2
ε

{
Ib2k + η11b2k1′

b2k + η2
(
Ib2 ⊗ 1k1′

k

)}
,

and η1 = σ 2
γ1

/σ 2
ε and η2 = σ 2

γ2
/σ 2

ε . These two variance ratios measure the extent to which ob-
servations are correlated. The correlation between two observations in the same subplot is equal
to (η1 + η2)/(1 + η1 + η2). The correlation between two observations from the same whole plot
but a different subplot is η1/(1 + η1 + η2). It is clear that larger values for η1 and η2 result in
more correlated observations within the whole plots and subplots.

When the random error terms as well as the whole-plot and subplot effects are normally
distributed, the maximum likelihood estimator of the unknown model parameter β in (1) is the
generalized least-squares estimator

β̂ = (X ′V −1 X )−1 X ′V −1Y ,

with covariance matrix

var(β̂) = (X ′V −1 X )−1.

The use of β̂ requires the estimation of the variance components σ 2
γ1

, σ 2
γ2

and σ 2
ε , which can

be substituted in V . This leads to the feasible generalized least-squares estimator. For the vari-
ance component estimation, we recommend restricted maximum likelihood estimation because
of its generality. The unbiasedness and variance of the resulting estimator are discussed in
Kackar & Harville (1984) and Harville & Jeske (1992). For the purpose of statistical inference,
we advocate the use of the method of Kenward & Roger (1997) for determining the standard er-
rors and the denominator degrees of freedom for the hypothesis tests concerning the fixed effects.
When limitations on the number of whole plots, subplots or runs do not allow the variance com-
ponents to be estimated, we would use either the method of Lenth (1989) or the permutation test
approach of Loughin & Noble (1997), adapted for split-split-plot experiments in a way similar to
that in which Loeppky & Sitter (2002) adapted these methods for split-plot experiments.

Under the model assumptions made, the information matrix on the unknown fixed parameters
β is given by M = X ′V −1 X . A commonly used criterion to select experimental designs is the
D-optimality criterion which seeks designs that maximize the determinant of the information
matrix, |M | = |X ′V −1 X |. The D-optimality criterion has been used for constructing split-plot
designs by Goos & Vandebroek (2001, 2003, 2004) and Goos & Donev (2007) and it is also
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the criterion that is implemented in the candidate-set-free algorithm described in Jones & Goos
(2007). We use the D-efficiency (|M1|/|M2|)1/p to compare the quality of two designs with
information matrices M1 and M2. In general, the optimal split-plot design will depend on the
variance ratios η1 and η2 through V . The sensitivity of the D-optimal designs to the choice of η1

and η2 is discussed in § 5.

3. DESIGN CONSTRUCTION ALGORITHM

3·1. Algorithm outline

This section first provides a rough general description of a modified coordinate-exchange
algorithm for generating D-optimal split-split-plot designs. Next, we show how to substantially
reduce the computational work by using a fast procedure to evaluate the change in the D-criterion
value when making changes to a design. In the Appendix, a fast update for the inverse of the
information matrix after exchanging one point for another is also provided.

The algorithm requires the prior specification of the following:

1. for each factor whether it is continuous, categorical or a mixture ingredient;
2. designation of the factors that are very hard to change, i.e. the factors applied to the whole-plot

stratum;
3. designation of the factors that are hard to change, i.e. the factors applied to the subplot

stratum;
4. any additional constraints on factor combinations;
5. the number, b1, of independent resettings of the very-hard-to-change factors, i.e. the number

of whole plots;
6. the number, b2, of independent resettings of the hard-to-change factors for each setting of the

very-hard-to-change factors, i.e. the number of subplots within each whole plot;
7. the number of observations, k, in each subplot;
8. the ratio η1 of the variance associated with the very-hard-to-change factors, σ 2

γ1
, to the error

variance, σ 2
ε ;

9. the ratio η2 of the variance associated with the hard-to-change factors, σ 2
γ2

, to the error

variance, σ 2
ε ;

10. the a priori model;
11. the number of random starting designs or tries, nT , to consider.

Given this information, the body of the algorithm has two parts. The first is the creation
of a starting design. The second is the iterative improvement of this design until no further
improvement is possible. Improvements are measured by increases in the objective function,
|M | = |X ′V −1 X |. The two parts are performed nT times. Each time the final value of |M | found
in the current iterate is compared to the maximum value of |M | from all the previous iterates. If
the current value is higher, then it becomes the new maximum and the current design is stored.

The starting design is formed column by column. For whole-plot factor columns, b1 random
numbers are chosen. For subplot factor columns, b1b2 random numbers are chosen. For sub-
subplot factor columns, the values for each of the n rows are chosen randomly. All the rows
in a given whole plot have the same value for each whole-plot factor. If there is more than
one whole-plot factor, however, the factors may have different values. Similarly, all the rows
in a given subplot have the same value for each subplot factor. Different subplot factors may
also have different values inside a subplot. This procedure gives the starting design the desired
split-split-plot structure.
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Improvements are made to the starting design by considering changes in the design
on an element-by-element basis. This is inspired by the coordinate-exchange algorithm of
Meyer & Nachtsheim (1995). The procedure for changing any given element depends on whether
that element is an easy-to-change factor, a hard-to-change factor or a very-hard-to-change factor.

For an element in a sub-subplot factor column, the objective function is evaluated over a
discrete number of values spanning the range of that factor. If the maximal value of the objective
function is larger than the current maximum, then the current maximum is replaced and the
current element in the design is replaced by the factor setting corresponding to the maximal
value.

The procedure is more involved for an element in a subplot factor column. If such an element
changes, then all the corresponding elements for that column in the same subplot must also
change. A discrete number of values spanning the range of the subplot factor are evaluated.
If the maximal value of the objective function is larger than the current maximum, then the
current maximum is replaced and all elements in the subplot factor column in the subplot under
consideration are replaced by the factor setting corresponding to the maximal value.

For an element in a whole-plot factor column, the procedure is the most computationally
expensive. If such an element changes, then all the corresponding elements for that column
in the same whole plot must also change. A discrete number of values spanning the range of
the factor are evaluated. Again, if the maximal value of the objective function is larger than the
current maximum, then the current maximum is replaced and all elements in the whole-plot factor
column in the whole plot under consideration are replaced by the factor setting corresponding to
the maximal value.

This element-by-element procedure continues until a complete cycle through the entire design
has been performed. Then, another complete cycle through the design is performed, checking
to see if any element has been changed in the current pass. This continues until no changes are
made in a whole pass or until a specified maximum number of passes have been executed.

3·2. Fast update procedures

Fast procedures can be used in the algorithm for evaluating the impact of a change of the
design on the objective function, |M |. Also, the inverse M−1 of the information can be updated
at a relatively low computational cost. The update procedures all build on the following theorem
which gives a simple analytical expression for the inverse of the covariance matrix V in (6).

THEOREM 1. The inverse of the covariance matrix V is equal to

V −1 = σ−2
ε In − c1 Z1 Z ′

1 − c2 Z2 Z ′
2, (7)

where

c1 = σ−2
ε

η1 − η1η2k
1+η2k

1 + η1b2k + η2k
, c2 = σ−2

ε

η2

1 + η2k
.

A proof of this result is obtained by multiplying the right-hand side of (7) by the right-hand
side of (6) and observing that this produces the identity matrix. When doing so, the following
matrix results prove to be useful: Z ′

1 Z1 = b2k Ib1 , Z ′
2 Z2 = k Ib2 and Z1 Z ′

1 Z2 Z ′
2 = k Z1 Z ′

1.
The theorem can be used to derive an alternative expression for the information matrix. As a

matter of fact, because of (7), we have that V −1 = diag(V −1
1 , . . . , V −1

b1
), where each

V −1
i = σ−2

ε

{
Ib2k − c11b2k1′

b2k − c2
(
Ib2 ⊗ 1k1′

k

)}
.
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This makes it possible to rewrite the information matrix as follows:

M =
b1∑

i=1

X ′
i V

−1
i Xi ,

= σ−2
ε X ′X − c1

b1∑
i=1

(
X ′

i 1b2k1′
b2k Xi

) − c2

b1∑
i=1

b2∑
j=1

(X ′
i j 1k1′

k Xi j ), (8)

= σ−2
ε X ′X − c1

b1∑
i=1

(
X ′

i 1b2k
)(

X ′
i 1b2k

)′ − c2

b1∑
i=1

b2∑
j=1

(X ′
i j 1k)(X ′

i j 1k)′,

where Xi is the part of X corresponding to the i th whole plot and Xi j is the part of X corresponding
to the j th subplot within the i th whole plot. If the model expansion of the lth design point
in the j th subplot of whole plot i is denoted by f (wi , si j , ti jl), then X ′X can be written as∑b1

i=1
∑b2

j=1
∑k

l=1 f (wi , si j , ti jl) f ′(wi , si j , ti jl). As a result, (8) can be written as a sum of outer
products of vectors. This opens the prospect of fast updates of the information matrix, its
determinant and its inverse.

Updating the determinant of the information matrix after changing the level of an easy-
to-change factor, a hard-to-change factor or a very-hard-to-change factor can be done using a
formula of the form |M∗| = |M ||Idi + DiU ′

i M−1Ui |, where M and M∗ represent the information
matrix before and after the change, respectively, Di is a di -dimensional diagonal matrix and Ui

is a p × di matrix. This is shown in detail in the Appendix. The matrices Di and Ui as well as the
integer di all depend on whether the factor level that is modified corresponds to an easy-to-change,
a hard-to-change or a very-hard-to-change factor.

For example, after a change in the level of an easy-to-change factor in the lth run of the j th
subplot within whole plot i , the matrices Di and Ui needed for the update are given by

D1 = diag
(−σ−2

ε , c1, c2, σ
−2
ε ,−c1,−c2

)
(9)

and

U1 = [
f (wi , si j , ti jl) X ′

i 1b2k X ′
i j 1k f (wi , si j , t∗

i jl) X∗′
i 1b2k X∗′

i j 1k
]′. (10)

In this last expression,

X∗′
i 1b2k = X ′

i 1b2k − f (wi , si j , ti jl) + f
(
wi , si j , t∗

i jl

)
(11)

and

X∗′
i j 1b2k = X ′

i j 1b2k − f (wi , si j , ti jl) + f
(
wi , si j , t∗

i jl

)
, (12)

with f ′(wi , si j , ti jl) the original row of X where the change took place, f ′(wi , si j , t∗
i jl) the

modified row, and X∗
i and X∗

i j the updated versions of Xi and Xi j , respectively. Note that
f ′(wi , si j , ti jl) is different from f ′(wi , si j , t∗

i jl) only in the elements corresponding to the main
effect, the interactions and the higher-order effects the factor whose level was changed is involved
in. This simplifies the updating of X∗′

i 1b2k and X∗′
i 1b2k .

For a change in the level of an easy-to-change factor, the value of di is six. As a result,
computing the new determinant using the update formula requires calculating the determinant of
a 6 × 6 matrix instead of the determinant of a p × p matrix. As split-split-plot designs involve
at least three factors, the number of model parameters, p, will often be substantially larger than
six, so that the update formula will lead to substantial savings in computational effort.
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Table 1. D-optimal 16-run split-split-plot design with two whole plots, each consisting of two
subplots for estimating a main-effects model with one very-hard-to-change factor w, one hard-

to-change factor s and twelve easy-to-change factors t1–t12

Whole plot Subplot w s t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

1 1 −1 −1 1 1 1 1 −1 1 1 1 1 1 −1 −1
1 1 −1 −1 1 1 −1 −1 1 −1 −1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 −1 −1 −1 −1 1 −1 1 1
1 1 −1 −1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 1
1 2 −1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1 −1 −1
1 2 −1 1 −1 −1 1 1 1 1 1 −1 −1 1 1 −1
1 2 −1 1 −1 1 −1 −1 −1 −1 1 1 1 1 1 1
1 2 −1 1 1 1 1 1 1 −1 −1 1 −1 −1 −1 1
2 3 1 1 1 1 −1 1 1 1 1 −1 1 −1 1 1
2 3 1 1 −1 1 1 −1 −1 1 −1 −1 −1 1 −1 1
2 3 1 1 1 −1 1 −1 −1 −1 1 1 −1 −1 1 −1
2 3 1 1 −1 −1 −1 1 1 −1 −1 1 1 1 −1 −1
2 4 1 −1 −1 1 1 −1 1 −1 1 −1 1 −1 −1 −1
2 4 1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 1
2 4 1 −1 1 −1 1 −1 1 1 −1 1 1 1 1 1
2 4 1 −1 −1 1 −1 1 −1 1 −1 1 −1 −1 1 −1

Updating the determinant of the information matrix after a change in either a hard-to-change
factor or a very-hard-to-change factor is more involved. It requires the computation of the
determinant of a 2(k + 2) × 2(k + 2) matrix and a 2(b2k + b2 + 1) × 2(b2k + b2 + 1) matrix,
respectively. Therefore, the update formulae for changes in hard-to-change and very-hard-to-
change factor levels are advantageous when k and b2 are small compared to the number of model
parameters, p.

4. DESIGNS FOR MAIN-EFFECTS MODELS

Using the modified coordinate-exchange algorithm sketched in § 3, we have been able to
construct orthogonal split-split-plot designs with diagonal information matrices for many nesting
structures for which the numbers of whole plots and subplots within the whole plots are powers
of two or multiples of four. Table 1 shows such a design with 16 runs, two whole plots and two
subplots per whole plot, accommodating one very-hard-to-change factor w, one hard-to-change
factor s, and twelve easy-to-change factors, t1–t12. The information matrix of that design, which
is a projection of a Hall-type IV orthogonal array (Sun and Wu, 1993), has the information
matrix diag(1·2308 I2, 3·2, 16 I12) when σ 2

γ1
, σ 2

γ2
and σ 2

ε are all one. This demonstrates that no
information on the easy-to-change factors is lost because of the nested unit structure of the
design. However, this design does not allow for the estimation of the whole plot error variance,
σ 2

γ1
, because it only has two whole plots. Also, it is impossible to estimate the error variance, σ 2

ε ,
because the twelve degrees of freedom at the sub-subplot level are used up for estimating the
main effects of the twelve easy-to-change factors.

A main-effects design that allows σ 2
γ1

to be estimated but not σ 2
ε is displayed in Table 2. The

design has six whole plots each consisting of two subplots with two observations and, like the
design in Table 1, accommodates one very-hard-to-change factor w, one hard-to-change factor
s and twelve easy-to-change factors, t1–t12. For each pair of runs in a subplot, the levels of the
easy-to-change factors are each other’s opposites. The information matrix of that design equals
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Table 2. D-optimal 24-run split-split-plot design with six whole plots, each consisting of two
subplots for estimating a main-effects model with one very-hard-to-change factor w, one hard-

to-change factor s and twelve easy-to-change factors t1–t12

Whole plot Subplot w s t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

1 1 −1 1 −1 −1 1 −1 1 −1 −1 1 1 1 −1 1
1 1 −1 1 1 1 −1 1 −1 1 1 −1 −1 −1 1 −1
1 2 −1 −1 −1 1 −1 1 1 1 −1 1 1 −1 1 1
1 2 −1 −1 1 −1 1 −1 −1 −1 1 −1 −1 1 −1 −1
2 3 1 −1 1 1 1 1 1 1 −1 1 −1 1 −1 −1
2 3 1 −1 −1 −1 −1 −1 −1 −1 1 −1 1 −1 1 1
2 4 1 1 −1 1 1 −1 −1 −1 −1 1 −1 −1 1 −1
2 4 1 1 1 −1 −1 1 1 1 1 −1 1 1 −1 1
3 5 1 1 1 1 1 1 −1 −1 1 1 1 1 1 1
3 5 1 1 −1 −1 −1 −1 1 1 −1 −1 −1 −1 −1 −1
3 6 1 −1 1 −1 −1 1 −1 −1 −1 1 1 −1 −1 −1
3 6 1 −1 −1 1 1 −1 1 1 1 −1 −1 1 1 1
4 7 1 1 1 −1 −1 −1 −1 1 −1 1 −1 1 1 1
4 7 1 1 −1 1 1 1 1 −1 1 −1 1 −1 −1 −1
4 8 1 −1 −1 1 −1 1 −1 −1 −1 −1 −1 1 −1 1
4 8 1 −1 1 −1 1 −1 1 1 1 1 1 −1 1 −1
5 9 −1 −1 1 −1 1 1 1 −1 −1 −1 −1 −1 1 1
5 9 −1 −1 −1 1 −1 −1 −1 1 1 1 1 1 −1 −1
5 10 −1 1 1 1 1 −1 −1 1 −1 −1 1 −1 −1 1
5 10 −1 1 −1 −1 −1 1 1 −1 1 1 −1 1 1 −1
6 11 −1 −1 1 1 −1 −1 1 −1 −1 −1 1 1 1 −1
6 11 −1 −1 −1 −1 1 1 −1 1 1 1 −1 −1 −1 1
6 12 −1 1 1 1 −1 −1 1 −1 1 1 −1 −1 −1 1
6 12 −1 1 −1 −1 1 1 −1 1 −1 −1 1 1 1 −1

diag(3·4286 I2, 8, 24 I12) when σ 2
γ1

, σ 2
γ2

and σ 2
ε are all one, so that, here too, no information is

lost for estimating the easy-to-change factor effects due to the nested unit structure of the design.
D-optimal split-split-plot designs with identical nesting structures and fewer easy-to-change

factors can easily be obtained from Tables 1 and 2 by removing columns corresponding to easy-
to-change factors. Dropping one or more easy-to-change factor columns from the design makes
the error variance, σ 2

ε , estimable, so that it is possible to test the significance of the remaining
sub-subplot factors.

5. DESIGNS FOR INTERACTION MODELS

In completely randomized two-level designs, a diagonal information matrix guarantees an
optimal design. In this section, we provide an example with a counter-intuitive result indicating
that, for two-level split-split-plot designs, a diagonal information matrix may not be optimal.

Consider the D-optimal 32-run split-split-plot design with eight whole plots consisting of two
subplots each in Table 3. This design is the best one obtained using our algorithm for estimating
all the parameters of an interaction model including two very-hard-to-change factors w1 and w2,
one hard-to-change factor s and three easy-to-change factors t1, t2 and t3 when η1 = η2 = 1. It
has a D-criterion value of 4·80132 ×1026 when σ 2

γ1
, σ 2

γ2
and σ 2

ε are all one.
Although the design is orthogonal, its information matrix is not diagonal, i.e. X ′X is diagonal

but X ′V −1 X is not. The design, however, has a lot of attractive features. First, all main effects
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Table 3. D-optimal 32-run split-split-plot design with eight whole plots, each consisting of two
subplots for estimating an interaction model with two very-hard-to-change factors w1 and w2,

one hard-to-change factor s and three easy-to-change factors t1, t2 and t3
Whole plot Subplot w1 w2 s t1 t2 t3 Whole plot Subplot w1 w2 s t1 t2 t3

1 1 1 1 1 −1 −1 1 5 9 −1 −1 1 1 1 −1
1 1 1 1 1 1 1 −1 5 9 −1 −1 1 −1 −1 −1
1 2 1 1 −1 1 −1 −1 5 10 −1 −1 −1 1 −1 1
1 2 1 1 −1 −1 1 1 5 10 −1 −1 −1 −1 1 1
2 3 −1 1 −1 −1 −1 1 6 11 1 −1 −1 1 1 −1
2 3 −1 1 −1 1 1 −1 6 11 1 −1 −1 −1 −1 1
2 4 −1 1 1 1 −1 −1 6 12 1 −1 1 1 −1 1
2 4 −1 1 1 −1 1 1 6 12 1 −1 1 −1 1 −1
3 5 1 −1 −1 −1 −1 −1 7 13 −1 1 1 1 −1 1
3 5 1 −1 −1 1 1 1 7 13 −1 1 1 −1 1 −1
3 6 1 −1 1 1 −1 −1 7 14 −1 1 −1 −1 −1 −1
3 6 1 −1 1 −1 1 1 7 14 −1 1 −1 1 1 1
4 7 −1 −1 −1 −1 1 −1 8 15 1 1 −1 −1 1 −1
4 7 −1 −1 −1 1 −1 −1 8 15 1 1 −1 1 −1 1
4 8 −1 −1 1 1 1 1 8 16 1 1 1 1 1 1
4 8 −1 −1 1 −1 −1 1 8 16 1 1 1 −1 −1 −1

are estimated independently. Only one of the six main effects, namely one corresponding to an
easy-to-change factor, is not estimated independently of the two-factor interaction effects. Second,
only six of the 462 off-diagonal elements of the information matrix and of the variance-covariance
matrix of the parameter estimates are nonzero, so the information matrix is very nearly diagonal.
The six nonzero off-diagonal elements of the variance-covariance matrix of the parameter esti-
mates are all equal to ±1/96 = ±0·01042 when σ 2

γ1
, σ 2

γ2
and σ 2

ε are all one. They correspond to
the covariances between the estimates of the main effect of one of the easy-to-change factors and
its interactions with the two very-hard-to-change factors w1 and w2. These covariances are small
compared to the variances of the fixed parameter estimates, which are displayed in the column
labelled D-optimal in Table 4. A third attractive feature of the design is that eight of the fifteen
effects involving easy-to-change factors are estimated with variance 1/32 = 0·03125, which is
the best possible variance for a design involving 32 runs. Only the interactions involving pairs of
easy-to-change factors are estimated substantially less precisely. The least precise of these interac-
tion estimates has variance 3/32 = 0·09375, just like the main effect of the hard-to-change factor
s and the two interactions between that factor and the very-hard-to-change factors w1 and w2.

The literature on minimum aberration two-level split-plot designs provides no ready-to-use
alternative to the D-optimal 32-run split-split-plot design, but it does provide building blocks
for generating 32-run designs with the desired split-split-plot structure with eight whole plots
consisting of two subplots of size two. Some of these possess the attractive feature that their
information matrix is diagonal, so that, unlike with the D-optimal design, the main effects
and the two-factor interaction effects can be estimated independently. One such design can be
constructed starting from a minimum aberration 32-run two-level split-plot design with two
whole-plot factors, four subplot factors and eight whole plots of size four given in Bingham et al.
(2004). The design’s defining relation is t3 = w1w2st1t2 and the contrast column w1st2 is used to
obtain the desired number of eight whole plots. The minimum aberration design can be used as
a 32-run split-split-plot design by using one of its four subplot columns for the hard-to-change
factor s.
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Table 4. Variance of estimates of fixed model parameters for the D-optimal
32-run split-split-plot design in Table 3 and a combinatorially constructed al-

ternative when σ 2
γ1

= σ 2
γ2

= σ 2
ε = 1

Stratum Effect D-optimal Alternative

WP Intercept 0·21875 0·21875
WP w1 0·21875 0·21875
WP w2 0·21875 0·21875
WP w1w2 0·21875 0·21875
SP s 0·09375 0·09375
SP w1s 0·09375 0·09375
SP w2s 0·09375 0·09375

SSP t1 0·03125 0·03125
SSP t2 0·03125 0·03125
SSP t3 0·04167 0·03125
SSP w1t1 0·03125 0·03125
SSP w1t2 0·03125 0·03125
SSP w1t3 0·04167 0·03125
SSP w2t1 0·03125 0·03125
SSP w2t2 0·03125 0·03125
SSP w2t3 0·04167 0·03125
SSP st1 0·03125 0·03125
SSP st2 0·03125 0·03125
SSP st3 0·03977 0·03125
SSP t1t2 0·09375 0·09375
SSP t1t3 0·07721 0·21875
SSP t2t3 0·06908 0·09375

A better alternative, however, can be constructed by arranging a half fraction of a factorial
design with defining relation t2 = w1w2st1 in the desired split-split-plot structure using the
contrast columns w1, w2 and w2t1t3 to partition the 32 runs into eight whole plots. The variances
of the parameter estimates for this combinatorially constructed alternative design are displayed
in Table 4. Desirable features of the design, which has a diagonal information matrix, are that
all whole-plot and subplot effects are estimated with maximum precision, and that all but three
sub-subplot effects are estimated with the best possible variance, 1/32 = 0·03125. However, this
is at the expense of the three two-factor interaction effects between the easy-to-change factors,
which are raised to one of the higher strata. Two of these interaction effects are raised to the
subplot stratum, and thus estimated with variance 3/32 = 0·09375, while the third one is even
raised to the whole-plot stratum. This results in a variance of 7/32 = 0·21875. As a consequence
of all this, the D-criterion value of the alternative design, when σ 2

γ1
, σ 2

γ2
and σ 2

ε are all one, is

3·17836 ×1026. The D-efficiency of the combinatorially constructed design, relative to the D-
optimal design, is 98·14%. Thus, the algorithmically constructed design has a higher determinant
than the alternative despite its having a nondiagonal information matrix. This is achieved by
sacrificing some of the precision of the estimates of three subplot effects and the independence
between these estimates in order to obtain reasonably small variances for the estimates of the
two-factor interaction effects between the easy-to-change factors.

The larger variances for the estimates of the main and interaction effects of some of the easy-
to-change factors seem very difficult to avoid in many split-plot design problems, especially when
the number of runs in every subplot is as small as two. Optimal design construction algorithms
like ours, however, attempt to limit that increase by introducing some imbalance in the levels
of the easy-to-change factors within the subplots. This is illustrated by the design in Table 3,
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Table 5. D-optimal 12-run split-split-plot designs with three whole plots, each consisting of two
subplots with two runs for estimating a main-effects model with one very-hard-to-change factor
w, one hard-to-change factor s and one easy-to-change factor t . The three factors are categorical

t
Whole plot Subplot w s η2 = 0·1 η2 = 1 η2 = 10

1 1 A a 1 1 1
1 1 A a 2 2 2
1 2 A b 2 2 2
1 2 A b 3 3 1
2 3 B b 1 1 2
2 3 B b 2 3 3
2 4 B c 2 2 1
2 4 B c 3 3 3
3 5 C a 2 2 1
3 5 C a 3 3 3
3 6 C c 1 1 2
3 6 C c 2 2 3

where the low and the high level of the easy-to-change factor t3 are unbalanced in each of the
subplots 7–10. This explains the small variance inflation for the main-effect estimate of that factor
when compared to the main-effect estimates for t1 and t2. In all other subplots, the levels of the
easy-to-change factors are balanced.

6. SENSITIVITY TO η1 AND η2

As mentioned in § 2, the D-optimal split-split-plot designs depend on the two variance ratios,
η1 and η2. Goos (2002) studied the effect of changing the ratio of the whole-plot variance to the
error variance on D-optimal split-plot designs. He showed that, for given numbers and sizes of
whole plots, D-optimal split-plot designs for first-order models are in many standard cases not a
function of this ratio. Split-plot response surface designs did, however, show some sensitivity to
changes in this ratio. Sometimes as many as three different designs were found to be D-optimal,
each over mutually exclusive intervals of the variance ratio. Over practical ranges of the variance
ratio, the D-optimal design usually did not change.

Of course, the split-split-plot structure is more complicated than the split-plot structure, so
it is necessary to address this question again. We investigated the effect of changing the two
variance ratios η1 and η2 over broad ranges, and report the results obtained for two different
design problems that are illustrative for the sensitivity of the D-optimal designs to η1 and η2.

The first design problem involved a main-effects model in three categorical factors each at three
levels. The first scenario had three whole plots, six subplots and a total sample size of twelve.
We computed designs for a 3 by 3 grid of η1 and η2 values from 0·1 to 1 to 10. We found three
different D-optimal designs, one for each value of η2. The three designs are shown in Table 5.
For each design, the whole plot and subplot structure is the same. There are four runs at each
level of both the whole-plot factor and the subplot factor. The differences in the designs come in
the sub-subplot factor levels. For η2 = 0·1, there are three runs at two levels and six runs at the
other. For η2 = 1, there are three runs at one level, four runs at another and five runs at the third.
For η2 = 10, there are four runs at each level. In this case, the arrangement of the three levels
of the easy-to-change factor in six subplots of two runs takes the form of a duplicated balanced
incomplete block design for three treatments with three blocks of size two.
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Table 6. Comparative D-efficiencies for misspecifications of η1 and η2 assuming σ 2
ε is one for a

design problem involving one very-hard-to-change factor, one hard-to-change factor and three
easy-to-change factors and a model with main effects and two-factor interactions

σ 2
γ1

= σ 2
γ2

= 0·1 σ 2
γ1

= σ 2
γ2

= 1 σ 2
γ1

= σ 2
γ2

= 10
η1 η1 η1

η2 0·1 1·0 10 0·1 1·0 10 0·1 1·0 10

0·1 100·00 100·00 100·00 100·00 100·00 100·00 89·63 89·63 89·63
1 100·00 100·00 100·00 100·00 100·00 100·00 89·63 89·63 89·63

10 96·36 96·37 96·42 95·69 95·95 96·05 99·88 99·99 100·00

In order to investigate whether the information content of the three designs in Table 5 is very
different, we compare the objective function, |M |, for each of them assuming σ 2

γ1
, σ 2

γ2
and σ 2

ε are
all one. The determinant of the information matrix of the D-optimal design for η2 = 1 is 3978·7,
while the design with four runs at each level, obtained for η2 = 10, has a determinant of 3944·7.
The relative efficiency of this design is 99·88%. The determinant of the design with 3, 3 and 6
runs per level, obtained for η2 = 0·1, is 3672·6 with a relative efficiency of 98·86%. While the
easy-to-change factor levels look very different for the three designs, there is thus no substantial
difference among them for the purpose of estimating the parameters of the model.

The second design problem considered five continuous factors, with one very-hard-to-change
and one hard-to-change factor, and a model including all main effects and two-factor interactions.
There were six whole plots, 12 subplots and 24 runs in total. We computed nine D-optimal designs
for this setting using the same 3 by 3 design in log η1 and log η2.

Here the story is more involved as the designs vary depending on both η1 and η2. We found
four distinct designs over the nine possibilities where we distinguish between designs based on
the determinant of their information matrix while holding the covariance matrix, V , fixed at one
value of η1 and η2. One of the designs was optimal for all six scenarios where η2 < 10. When
σ 2

γ1
= σ 2

γ2
= 0·1 and σ 2

ε = 1, the D-efficiencies of the four distinct designs found, relative to the

optimal design for η1 = η2 = 0·1, range from 96·36% to 100%. When σ 2
γ1

= σ 2
γ2

= σ 2
ε = 1, the

D-efficiencies of the designs found, relative to the optimal design for η1 = η2 = 1, range from
95·69% to 100%. The six designs that were the same all had full efficiency for these values of the
variance components. When σ 2

γ1
= σ 2

γ2
= 10 and σ 2

ε = 1, the D-efficiencies of the designs found,
relative to the optimal design for η1 = η2 = 10, range from 89·63% to 100%. Detailed results
are in Table 6.

For the second design problem in this sensitivity study, we also investigated whether a design
could be found that is more robust to the values of the variance ratios η1 and η2 than the ones
generated using our algorithm, which assumes a point prior for their values. To this end, we
implemented a Bayesian approach in which we used independent χ2 distributions with two
degrees of freedom as priors for η1 and η2. The 2·5%, 50% and 97·5% percentiles of these
prior distributions are 0·05, 1·39 and 7·38, respectively, so that we allowed for considerable
uncertainty about the variance ratios. It turns out that the Bayesian D-optimal split-split-plot
design is equivalent to the non-Bayesian design obtained for η2 = 0·1 and η2 = 1, so that the
Bayesian approach did not provide the desired robustness.

The concern is that misspecifying η1 and η2 for the purpose of designing a split-split-plot
experiment with our algorithm might lead to the use of a design that is very inefficient. The
last study shows that it is better to choose large values for η2 since designs that were optimal
assuming small values did not perform well if the true values were larger, whereas designs that
were optimal assuming large values still perform reasonably well if the true values are smaller.
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In both of the sensitivity studies reported here, it is more important to correctly specify the ratio
of the subplot variance to the error variance, η2, than the ratio of the whole-plot variance to the
error variance, η1, because the quality of the optimal split-split-plot designs obtained changes
more with η2 than with η1.

7. DISCUSSION

We have provided an algorithmic approach to the construction of D-optimal split-split-plot
designs. We have shown how to use this approach to create screening designs. We have also
considered the effect that changing the two relevant variance ratios has on the D-optimal
design.

For more examples of screening designs, some examples of split-split-plot response surface
designs and for a discussion of several attractive design options for the cheese production ex-
periment in Schoen (1999), we refer the reader to an unpublished working paper by the authors,
where it is also discussed what approach can be used when economic considerations dictate a
number of whole plots that does not allow for the estimation of the whole-plot variance.

In this article, we have assumed that the number of subplots is an integer multiple of the number
of whole plots, and that the total number of runs is an integer multiple of the number of subplots,
n = b1b2k. This scenario is perhaps the most common one in practice, where these parameters are
usually dictated by the logistics of the experiment and by time and cost constraints. Nevertheless,
there exist experimental situations where there are no hard constraints on the number of whole
plots, the number of subplots within whole plots and/or the number of runs within subplots.
In such cases, experimenters may want to deviate from the scenario discussed here and still
use the algorithm we outlined above to generate a D-optimal split-split-plot design for the unit
structure that they have in mind. However, in such cases the time-saving update formulae for the
information matrix described in § 3·2 can no longer be used because Theorem 1 is valid only for
the scenario we focused on in this article. Another approach would be to modify our algorithm
so that it generates the D-optimal numbers of whole plots, subplots within whole plots and runs
within subplots, in addition to the optimal design points. It seems likely that allowing for different
sizes of whole plots and subplots might improve the efficiency of D-optimal response surface
designs. Similar research was done by Goos & Vandebroek (2004), who presented an algorithm
for determining the optimal split-plot structure of an experimental design. The modified split-
split-plot algorithm could also be extended for computing D-optimal designs that do not just
focus on the precise estimation of the factor effects contained within β, but also on that of the
variance components σ 2

γ1
, σ 2

γ2
and σ 2

ε .
Apart from these extensions, some interesting research questions remain. More work could be

done to attempt to bound the effect of misspecification of the two variance ratios on which the
D-optimal design depends. Another potentially interesting topic for future research is the use of
Bayesian optimal design criteria. Such criteria could be used to prioritize the precise estimation
of the main effects when constructing optimal split-plot and split-split-plot designs. The fast
update formulae in the Appendix for the inverse of the information matrix also suggest that it
is possible to compute A-optimal and V-optimal, also called I-optimal, split-split-plot designs at
an acceptable computational cost. Finally, the design of experiments involving hard-to-change
factors and nonnested unit structures would be a useful topic for further investigation.

A version of the algorithm presented in this article is available in the commercial software JMP.
The algorithm can handle any scenario where the number of whole plots, the number of subplots
and the number of runs are fixed by the experimenter. The datasets contained in the article are
available from the authors as JMP data files or Excel files.
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APPENDIX

The update formulae derived here extensively use two matrix-algebraic results for matrices of the form
R + ST U , where R and T are nonsingular r × r and t × t matrices, respectively, and S and U are r × t
and t × r matrices, respectively. The first result is

|R + ST U | = |R||T ||T −1 + U R−1S| = |R|∣∣It + T U R−1S
∣∣, (A1)

while the second result is

(R + ST U )−1 = R−1 − R−1S(T −1 + U R−1S)−1U R−1. (A2)

Detailed proofs of these results can be found in Harville (1997), for example. The results are especially
useful when |R|, |T |, R−1 and T −1 are easy to obtain. This is exactly the case in the construction of
D-optimal split-split-plot designs because T is a diagonal matrix and because |R| and R−1 are being stored
during the entire operation of the design construction algorithm.

Changes to the level of an easy-to-change factor

A change to the level of an easy-to-change factor in the lth run of the j th subplot within the i th
whole plot only affects the corresponding row in the model matrix X . Such a change does not require the
information matrix to be recomputed from scratch. In order to see this, denote the original of the affected
row by f ′(wi , si j , ti jl) and its modified version by f ′(wi , si j , t∗

i jl). The updated versions of X ′
i 1b2k and

X ′
i j 1k can then be obtained using (11) and (12), and the information matrix (8) can be updated using

M∗ = M − σ−2
ε f (wi , si j , ti jl) f ′(wi , si j , ti jl) + c1

(
X ′

i 1b2k

)(
X ′

i 1b2k

)′ + c2(X ′
i j 1k)(X ′

i j 1k)′

+ σ−2
ε f

(
wi , si j , t∗

i jl

)
f ′(wi , si j , t∗

i jl

) − c1

(
X∗′

i 1b2k

)(
X∗′

i 1b2k

)′ − c2

(
X∗′

i j 1k

)(
X∗′

i j 1k

)′
,

where M and M∗ represent the information matrix before and after the change, respectively, and X∗
i and

X∗
i j represent the updated versions of Xi and Xi j , respectively. This can be rewritten as

M∗ = M +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

f ′(wi , si j , ti jl)(
X ′

i 1b2k

)′

(X ′
i j 1k)′

f ′(wi , si j , t∗
i jl

)
(

X∗′
i 1b2k

)′
(

X∗′
i j 1k

)′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

′ ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−σ−2
ε 0 0 0 0 0

0 c1 0 0 0 0

0 0 c2 0 0 0

0 0 0 σ−2
ε 0 0

0 0 0 0 −c1 0

0 0 0 0 0 −c2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f ′(wi , si j , ti jl )

(X ′
i 1b2k)′

(X ′
i j 1k)′

f ′(wi , si j , t∗
i jl

)
(

X∗′
i 1b2k

)′
(

X∗′
i j 1k

)′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is of the form R + ST U so that the results in (A1) and (A2) can be used for computing |M∗| and
M∗−1. Defining D1 and U1 as in (9) and (10), and substituting these into (A1) and (A2) leads to the update
formulae for the determinant and the inverse of the information matrix

|M∗| = |M |∣∣I6 + D1U ′
1 M−1U1

∣∣ = |M ||D1|
∣∣D−1

1 + U ′
1 M−1U1

∣∣,
and

M∗−1 = M−1 − M−1U1

(
D−1

1 + U ′
1 M−1U1

)−1
U ′

1 M−1.

The matrix product M−1U1 plays a key role in these update formulae. The second expression for updating
the determinant is slightly less computationally involved than the first as D1 is a constant diagonal matrix
for given values of b1, b2, k and the three variance components.



D-optimal design of split-split-plot experiments 81

Changes to the level of a hard-to-change factor

A change to the level of a hard-to-change factor cannot be made for a single run because the level of
such a factor has to be constant for all the runs in a given subplot. Such a change can therefore only be
made to all the runs in an entire subplot. Modifying the level of a hard-to-change factor level in the j th
subplot within whole plot i therefore results in the following information matrix:

M∗ = M − σ−2
ε X ′

i j Xi j + c1

(
X ′

i 1b2k

)(
X ′

i 1b2k

)′ + c2(X ′
i j 1k)(X ′

i j 1k)′

+ σ−2
ε X∗′

i j X∗
i j − c1

(
X∗′

i 1b2k

)(
X∗′

i 1b2k

)′ − c2(X∗′
i j 1k)(X∗′

i j 1k)′,
(A3)

where

X∗
i j = [

f
(
wi , s∗

i j , ti j1

)
. . . f

(
wi , s∗

i j , ti jk

)]′

is the modified version of

Xi j = [ f (wi , si j , ti j1) . . . f (wi , si j , ti jk)]′,

and

X∗′
i 1b2k = X ′

i 1b2k − X ′
i j 1k + X∗′

i j 1k .

Each X∗
i j and Xi j only differ in the columns corresponding to the factor whose level is changed, its

interactions and higher-order terms involving it. Now, (A3) can be written as M∗ = M + U2 D2U ′
2, where

D2 = diag
(−σ−2

ε Ik, c1, c2, σ
−2
ε Ik,−c1,−c2

)
,

U2 = [
X ′

i j X ′
i 1b2k X ′

i j 1k X∗′
i j X∗′

i 1b2k X∗′
i j 1k

] ′
.

As a result,

|M∗| = |M |∣∣I2(k+2) + D2U ′
2 M−1U2

∣∣ = |M ||D2|
∣∣D−1

2 + U ′
2 M−1U2

∣∣,
and

M∗−1 = M−1 − M−1U2

(
D−1

2 + U ′
2 M−1U2

)−1
U ′

2 M−1.

Changes to the level of a very-hard-to-change factor

Finally, after a change in one of the levels of a very-hard-to-change factor, the update is even more
involved as such a change has an impact on all b2k runs in that stratum. If the change is performed in the
i th whole plot, then the new information matrix can be computed as

M∗ = M − σ−2
ε X ′

i Xi + c1

(
X ′

i 1b2k

)(
X ′

i 1b2k

)′ + c2

b2∑
j=1

(X ′
i j 1k)(X ′

i j 1k)′

+ σ−2
ε X∗′

i X∗
i − c1

(
X∗′

i 1b2k

)(
X∗′

i 1b2k

)′ − c2

b2∑
j=1

(
X∗′

i j 1k

)(
X∗′

i j 1k

)′
, (A4)

where

X∗
i j = [

f
(
w∗

i , si j , ti j1

)
. . . f

(
w∗

i , si j , ti jk

)]′

is the modified version of Xi j , and

X∗
i = [

f
(
w∗

i , si1, ti11

)
. . . f

(
w∗

i , sib2 , tib2k

)]′

is the modified version of Xi . Each X∗
i j and Xi j only differ in the columns corresponding to the factor

whose level is changed, its interactions and higher-order terms involving it. Now, (A4) can be written as
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M∗ = M + U3 D3U ′
3, where

D3 = diag
(−σ−2

ε Ib2k, c1, c2 Ib2 , σ
−2
ε Ib2k,−c1,−c2 Ib2

)
,

U3 = [
X ′

i X ′
i 1b2k X ′

i11k . . . X ′
ib2

1k X∗′
i X∗′

i 1b2k X∗′
i11k . . . X∗′

ib2
1k

]′
.

As a result,

|M∗| = |M |∣∣I2(b2k+b2+1) + D3U ′
3 M−1U3

∣∣ = |M ||D3|
∣∣D−1

3 + U ′
3 M−1U3

∣∣,
and

M∗−1 = M−1 − M−1U3

(
D−1

3 + U ′
3 M−1U3

)−1
U ′

3 M−1.

REFERENCES

BINGHAM, D. R., SCHOEN, E. D. & SITTER, R. R. (2004). Designing fractional factorial split-plot experiments with few
whole-plot factors. Appl. Statist. 53, 325–39. Corrigendum, 54, 955–8.

BRIEN, C. J. & BAILEY, R. A. (2006). Multiple randomizations. J. R. Statist. Soc. B 68, 571–609.
EDMONDSON, R. N. (1991). Agricultural response surface experiments based on four-level factorial designs. Biometrics

47, 1435–48.
GOOS, P. (2002). The Optimal Design of Blocked and Split-Plot Experiments. New York: Springer.
GOOS, P. (2006). The usefulness of optimal design for generating blocked and split-plot response surface experiments.

Statist. Neer. 60, 361–78.
GOOS, P. & DONEV, A. N. (2007). Tailor-made split-plot designs with mixture and process variables. J. Qual. Technol.

39, 326–39.
GOOS, P. & VANDEBROEK, M. (2001). Optimal split-plot designs. J. Qual. Technol. 33, 436–50.
GOOS, P. & VANDEBROEK, M. (2003). D-optimal split-plot designs with given numbers and sizes of whole plots.

Technometrics 45, 235–45.
GOOS, P. & VANDEBROEK, M. (2004). Outperforming completely randomized designs. J. Qual. Technol. 36, 12–26.
HARVILLE, D. A. (1997). Matrix Algebra from a Statistician’s Perspective. New York: Springer.
HARVILLE, D. A. & JESKE, D. R. (1992). Mean squared error of estimation or prediction under a general linear model.

J. Am. Statist. Assoc. 87, 724–31.
JONES, B. & GOOS, P. (2007). A candidate-set-free algorithm for generating D-optimal split-plot designs. Appl. Statist.

56, 347–64.
KACKAR, R. N. & HARVILLE, D. A. (1984). Approximations for standard errors of estimators of fixed and random

effects in mixed linear models. J. Am. Statist. Assoc. 79, 853–62.
KENWARD, M. G. & ROGER, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood.

Biometrics 53, 983–97.
LENTH, R. V. (1989). Quick and easy analysis of unreplicated factorials. Technometrics 31, 469–73.
LOEPPKY, J. & SITTER, R. R. (2002). Analyzing unreplicated blocked fractional factorial and fractional factorial

split-plot designs. J. Qual. Technol. 34, 229–43.
LOUGHIN, T. M. & NOBLE, W. (1997). A permutation test for effects in an unreplicated factorial design. Technometrics

39, 180–90.
MEE, R. & BATES, R. L. (1998). Split-lot designs: experiments for multistage batch processes. Technometrics 40, 127–

40.
MEYER, R. K. & NACHTSHEIM, C. J. (1995). The coordinate-exchange algorithm for constructing exact optimal

experimental designs. Technometrics 37, 60–9.
SCHOEN, E. D. (1999). Designing fractional two-level experiments with nested error structures. J. Appl. Statist.

26, 495–508.
SUN, D. X. & WU, C. F. J. (1993). Statistical properties of Hadamard matrices of order 16. In Quality Through

Engineering Design, Ed. W. Kuo, pp. 169–79. New York: Elsevier.
TRINCA, L. A. & GILMOUR, S. G. (2001). Multi-stratum response surface designs. Technometrics 43, 25–33.
WEBB, D., LUCAS, J. M. & BORKOWSKI, J. J. (2004). Factorial experiments when factor levels are not necessarily reset.

J. Qual. Technol. 36, 1–11.

[Received May 2008. Revised October 2008]


	Introduction
	Model and design criterion
	Design construction algorithm
	Algorithm outline
	Fast update procedures

	Designs for main-effects models
	Designs for interaction models
	Sensitivity to 1 and 2
	Discussion

