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Graphical Assessment of the Prediction 

Capability of Response Surface Designs 

Ann Giovannitti-Jensen and Raymond H. Myers 

Department of Statistics 
Virginia Polytechnic Institute 

and State University 
Blacksburg VA 24061 

Measures of the quality of prediction at locations on the surface of a hypersphere are pre- 
sented. These measures are used to form a graphical method of assessing the overall prediction 
capability of an experimental design throughout the region of interest. A plot of the spherical 
variance and the maximum and minimum prediction variances for locations on a sphere 
against the radius of the sphere, a variance dispersion graph, is used to give a comprehensive 
picture of the behavior of the prediction variances throughout a region and hence of the 
quality of the predicted responses obtained with a particular design. Such plots are used to 
investigate and compare the prediction capabilities of certain response surface designs cur- 
rently available to the researcher. 

KEY WORDS: Dispersion graphs; Efficiency; Prediction variance; Spherical measures. 

1. THE RESPONSE SURFACE 
DESIGN PROBLEM 

Since the landmark article by Box and Wilson 
(1951), researchers have proposed many criteria for 
evaluating and comparing response surface designs. 
Response surface methodology (RSM) often in- 
volves the fitting by the method of least squares of 
a first-order regression model 

k 

y = bo + bixi + E (1.1) 
i=1 

or a second-order model 

k k 

y = bo + E bixi + x biix + EE bijXix + E 
i=l i=l i<j 

(1.2) 

to a set of data in which xl, x2, . . , xk represent a 
set of design variables, y represents a measured re- 
sponse, and E is a random error with mean 0 and 
variance a2. The properties of these response surface 
models are dictated by theory of the general linear 
model y = Xfi + E, where X is the model matrix, 
influenced by the experimental design and the ran- 
dom vector E is assumed to have mean 0 and 
dispersion matrix a2L. Box and Wilson (1951) intro- 
duced the notion of composite designs in which a 
two-level factorial or fractional factorial design is 
augmented by "star" points that allow for estimation 
of pure quadratic terms in the fitted model of Equa- 

tion (1.2). Other response surface designs to rival 
the composite designs were proposed by Box and 
Behnken (1960). Illustrations of the use of such re- 
sponse surface designs appear in works by Box and 
Draper (1987), Khuri and Cornell (1987), and Myers 
(1976). Design classes motivated by Kiefer's (1959) 
design-optimality criteria were proposed in the 1970s 
and 1980s (see Box and Draper 1971, 1974; Hoke 
1974; Mitchell and Bayne 1978; Notz 1982). The easy 
access to experimental plans that are D-efficient is 
the prime motivation for the development of many 
of these designs. D-efficiency is based on the max- 
imization of the determinant of X'X (see, e.g., At- 
wood 1969). D-efficient designs result in relatively 
small values of the generalized variance of the coef- 
ficients. The practical value of D-optimality was re- 
viewed by St. John and Draper (1975). 

Single Number Design Criteria 

Attempts to compare response surface designs 
have been made on the basis of single-valued effi- 
ciency-type criteria. There is an abundance of liter- 
ature on D-efficiency in connection with response 
surface designs. Among these are works by Lucas 
(1974, 1976), Nalimov, Golikova, and Mikeshina 
(1970), and many others. The concept of D-efficiency 
suggests a simple and interesting single number cri- 
terion for design construction and for comparing de- 
signs. D-efficiency obviously accommodates the 
notion of estimation of regression coefficients. The 
success of a response surface study is best quantified, 
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however, through the consideration of the prediction 
variance function 

N(var 9(x)) 
a2 = Nf'(x)(X'X)- f(x), (1.3) 

where the vector-valued function f(x) represents an 
arbitrary point in the model space and contains the 
model terms characterized by the rows of the X ma- 
trix. The matrix (X'X)-I is the variance-covariance 
matrix of the regression coefficients (apart from a2). 
It is difficult to accurately characterize the perform- 
ance of N var 9(x)/a2 with a single number. Box and 
Draper (1959, 1963) used the notion of the average 
variance or integrated prediction variance 

IV = N - var (x) dx 
a R 

over a region of interest R to develop designs that 
are robust against model misspecification. Here K is 
the inverse of the volume of the region R. The cri- 
terion, however, does not address the notion of gen- 
eral behavior and stability of N var y(x)/a2 
throughout the experimental design region or the 
region in which the user desires good prediction or 
estimation of response. Many RSM designs experi- 
ence a deterioration of N var 9(x)/a2 on or near the 
design perimeter. It is often important for the ex- 
perimenter to estimate the response well near the 
design perimeter. On the other hand, some designs 
may experience "weak spots" in the design interior 
even though the "average" prediction variance is rea- 
sonably good. 

The criterion of G-efficiency certainly is attentive 
to the performance of the variance function. The G- 
optimal design minimizes the maximum value (over 
the design region) of N var 9(x)la2. Lucas (1976) 
considered G-efficiency in the comparison of re- 
sponse surface designs. G-efficiency is calculated for 
a specific design as p/(max N var P(x)/a2), where p 
is the number of model parameters and the max- 
imization is taken over all x in the design region. A 
G-optimal design has max N var 9(x)/a2 = p. G- 
efficiency is certainly an important measure but, as 
a single number criterion, it does not supply sufficient 
information regarding the behavior of the variance 
function. 

The choice of RSM design parameters with the 
intent of stabilizing prediction variance was consid- 
ered by Box and Hunter (1957). They developed the 
notion of a rotatable design that guarantees equality 
of N var 9 (x)/(2 on spheres with origins at the design 
center. At the time, they used the number of center 
runs of the design to exert some control over the 
distribution of N var y(x)/a2 from the design center 

to the design perimeter. Their purpose was to gain 
stability beyond what is provided by rotatability. 
Draper (1982) shed more light on center runs and 
stability of prediction variance for a rotatable design. 

For any response surface design, there are loca- 
tions in the design region where responses are esti- 
mated well and locations where estimation is 
relatively poor. The concept of a design in which the 
variance function is constant everywhere in the de- 
sign space represents wishful thinking. The user de- 
serves to have a total assessment of prediction 
capability and stability. This total picture is often not 
supplied by a scalar numerical criterion. 

2. GRAPHICAL METHODS TO 
EVALUATE DESIGNS 

In recent years, more statisticians have recognized 
the value of graphical methods in data analysis. Since 
the performance of an experimental design (partic- 
ularly in an RSM setting) so obviously presents a 
multidimensional problem, it would seem that cre- 
ative graphical techniques in comparing and evalu- 
ating designs would be an obvious approach. In the 
following subsections, we provide the building blocks 
for a "variance footprint" of an arbitrary RSM design 
through a single two-dimensional picture. 

2.1 Assessment of Prediction 
Capability on Spheres 

In a general RSM setting, the variance of a pre- 
dicted response at a given location is a function of 
more than merely the distance of the location from 
the design center. We can begin our development by 
considering the spherical average prediction variance 
or spherical variance, Vr, the average of the variances 
of the estimated responses over the surface of a 
sphere, a quantity given by 

Vr = N- var( (x)) dx, 
ora Ju 

(2.1) 

where Ur = {X: zk=l x2 = r2} and T-1 = fu dx is 
the surface area of Ur. The spherical variance was 
used by Hussey, Myers, and Houck (1987) in eval- 
uating RSM designs for simulation models. By the 
definition of f(x) in Equation (1.3), we can write the 
response surface model for a single y as E(y) = 
f'(x)p. Hussey et al. (1987) showed that the spherical 
variance Vr is written as 

Vr = tr S(X'X)- , (2.2) 

where S is the matrix of region moments, the region 
being the hypersphere defined by Ur. S can be written 
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as 

S = T f (x)f'(x) dx. (2.3) 

The concept of region moments is the same as that 
used by Box and Draper (1959, 1963) and Draper 
and Lawrence (1965), the exception being that U, is 
the surface of a hypersphere. The relevant region 
moments that are dependent on the model being 
used are functions of the radius r and k, the dimen- 
sion of the hypersphere. For example, if the model 
is first order, the relevant region moments for com- 
puting Vr are moments through order 2. Details of 
the integration over the hypersphere were given by 
Stroud (1971). Spherical moments through order 4 
appear in Appendix A. Illustrations of the form of 
the S matrix for first-order and second-order models 
are given. 

To illustrate the use of the spherical variance, con- 
sider two first-order designs, DI, a 23 factorial, and 
D2, a 23 factorial with the points [-1, -1, -1] and 
[+1, +1, + 1] missing. Figure 1 provides a plot of 
Vr against r for both designs to illustrate the impact 
of the two missing observations from the orthogonal 
design. Notice that Vr, the average variance on a 
sphere for the two designs, is quite similar until we 
consider regions close to the design perimeter. The 
superiority of the orthogonal design becomes appar- 
ent at roughly a distance r = 1.0 from the design 
center. The superiority is more pronounced at the 
design perimeter, r = 3. 

It is predictable that the 23 factorial should be su- 
perior to the nonorthogonal six-point design. A plot 

6- 

w 

.4 

Cc, 

. 

n - 

0: 

i 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
RADIUS 

Figure 1. Comparison of Spherical Variances for Two First- 
Order Designs. Design 1 is a 23 factorial design with no center 
runs, N = 8; design 2 is a 23 factorial with two missing runs 
and no center runs, N = 6. Variances are weighted by sample 
size. 

of the two spherical variances is helpful, but addi- 
tional information is needed to gain more insight into 
the behavior of the variance function for competing 
designs. In this case, the plot is an accurate depiction 
of the stability of the variance function for the or- 
thogonal 23 plan since, as a rotatable design, N var 
9(x)/a2 is constant on spheres. But in the case of the 
six-point design, it does not give the true picture of 
how much variability in the variance function exists 
around Vr, the average value of N var P(x)/a2 on 
spheres. The material in the following sections out- 
lines methods of depicting dispersion around Vr. 

2.2 Use of Prediction Variance 
Dispersion Measures 

It is important to supplement the plot of Vr of 
Equation (2.2) with some measure that depicts the 
lack of stability of the variance function as a deviation 
from the "average" given by Vr. One needs to cap- 
ture in a graphical way a sense of the distribution of 
N var (x) as a function of r. Two such measures are 
the range and the "standard deviation." We define 
the range of N var y(x)/a2 on a sphere of radius r 
as 

N var P(x) R of V(r) = max y ( 
xEU _ a _ 

N var (x) - min 2 
XEUr _ a2 

and the "standard deviation" as the square root of 

Vof V(r) = var (x) V dx. 

(We do not pursue the "standard deviation" disper- 
sion measure with illustrations because of the ob- 
vious difficulty in interpretation.) Fairly simple 
expressions for the dispersion measures can be de- 
veloped for the case of a first-order model. For the 
case of a second-order RSM model, one has access 
to these measures using readily available computing 
algorithms. 

2.3 Dispersion Measures for the 
First-Order Model 

In the case of the first-order model in Equation 
(1.1), it is necessary to consider two specific cases. 
Consider first the situation that exists for many stan- 
dard first-order designs. The location of the design 
origin, centered to the levels (0, 0, . . ., 0), is the 
same as the center of the region of interest, the latter 
being defined as the center of spheres on which the 
variance function is being computed. We refer to this 
situation as case 1. For certain nonstandard or ill- 
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designed plans (missing data points, etc.), these two 
centers may not be the same. This will be referred 
to as case 2. Under case 1, Vr and the two dispersion 
measures are simple functions of the eigenvalues of 
(X'X) - and the radius at which the dispersion mea- 
sure is being evaluated. 

If we apply the general form of Vr in Equation 
(2.2) and make use of the region moment e2 = 
r2/k (from App. A), we obtain 

Nr2 k 

Vr = 1 +- S Ai, (2.4) 
i=1 

where the Ai are the eigenvalues of (X'X)-~. Equa- 
tion (2.4) indicates that in this case 1 situation, the 
average prediction variance on a sphere of radius r 
is a simple function of the average of the eigenvalues 
of (X'X)-L and r2. The details are supplied in Ap- 
pendix B. 

The extremes of N var y(x)/a2 on a radius r and 
hence R of V(r) are simple to compute for case 1. 
In fact, 

N var 9(x) max 2 = 1 + N(max)r2 (2.5) 

and 

N var (x) 
min 2 1 + N(Amin)r2. (2.6) 
xEU, a' 

As a result, 

R of V(r) = N(imax - min)r2. (2.7) 

Here, Amax and mmin are, respectively, the largest and 
smallest eigenvalues of (X'X)-l (see App. B). The 
expression for V of V(r) is also quite simple. It turns 
out that 

N2r4 
k 

Vof V(r) = 
(k +2) (- )2 (28) 

The proof of the result for R of V(r) appears in 
Appendix B. It turns out then, as expected, that if 
all of the eigenvalues are equal, both measures are 
0, a characteristic of an orthogonal and thus rotatable 
first-order design. In cases in which eigenvalues are 
not distinct, maximum and minimum values of N var 
y(x)/a2 on Ur may occur at more than one location. 

It is interesting but not unexpected that for designs 
that are not "messy" (case 1) the dispersion in N var 
9(x)/a2 on a sphere is proportional to the corre- 
sponding dispersion in the eigenvalues. These simple 
relationships allow us to establish properties of both 
the Vr and the dispersion measures, some of which 
also hold for designs that do not fall into case 1. In 
what follows, we will use R of V(r) as the dispersion 
measure depicted graphically because of its simplicity 
in interpretation for the user. 

Suppose we return to the earlier illustration with 
the 23 factorial and the nonorthogonal six-point de- 
sign. Figure 2 shows on the same picture the variance 
dispersion graphs (VDG's) for the two designs. 
These graphs are similar in structure to the ridge 
plots of Hoerl (1959) in which maximum response 
on a sphere is plotted against radius. The 23 design 
has a dispersion of 0. Thus its total variance picture 
is characterized by the Vr plot. The difficulty with 
the nonorthogonal six-point design is now charac- 
terized. The maximum and minimum values of N var 
y(x)/a2 depict an uncomfortable instability of pre- 
diction variance around Vr as one proceeds toward 
the design perimeter. 

We have indicated on the graph, for reference, 
parameter lines at p = 4 and 2p = 8. This gives the 
viewer a clear indication of the G-efficiency of the 
designs being studied. The 23, of course, achieves 
100% G-efficiency with N var 9(x)/a2 = p at the 
design perimeter, whereas the G-efficiency of the six- 
point design is below 50% depicted by the 2p = 8 
line. Hereafter, all VDG's illustrated will have the 
p and 2p lines displayed. 

The illustrations shown here are, of course, case 
1 designs. Analytic expressions for Vr, R of V(r), 
and V of V(r) for case 2 are not particularly ap- 
pealing and hence we will not display them here. 
Results and details for Vr and R of V(r) appear in 
Appendix B. Computation of R of V(r) can be ac- 
complished with an optimization algorithm. Further 
discussion of such an algorithm appears in Sec- 
tion 3. 

2.4 Graphical Illustration of the Effect of 
Design Augmentation 

Consider the following irregular first-order design 
(N = 17) for fitting a first-order model with four 

10- max[N Var y/a2] 

Var y/a2 ] 

0- 

0.0 02 014 06 08 
I 

l 1 
I 

4 
I ' 

1. 
' 

1 

I 

0.0 0.2 0.4 0.6 O.H 1.0 '.2 1.4 1.6 1.8 
RADIUS 

Figure 2. Variance Dispersion Graphs for Two First-Order 
Designs. Design 1 is a 23 factorial design with no center runs, 
N = 8; design 2 is a 23 factorial with two missing runs and 
no center runs, N = 6. Variances are weighted by sample 
size. 
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design variables: 

X1 X2 X3 X4 

1 
1 
1 

-1 
1 
1 
1 
1 

-1 
-1 
-1 

1 
-1 
-1 
-1 
-1 

0 

1 
1 
1 

-1 
1 
1 

-1 
1 

-1 
-1 
-1 

1 
-1 

1 
-1 
-1 

0 

1 
1 
1 

-1 
1 

-1 
1 
1 

-1 
-1 

1 
-1 

1 
-1 
-1 
-1 

0 

1 
-1 

1 
1 
1 

-1 
-1 
-1 

1 
1 
1 

-1 
-1 
-1 

1 
-1 

0 

(2.9) 

Figure 3 gives the variance dispersion graph de- 
picting the average prediction variance and the max- 
imum and minimum prediction variance as a function 
of r. The design is not orthogonal and it is clear from 
the picture that a severe loss of efficiency is experi- 
enced when one uses this design for predicting the 
response. The VDG for a 24 design with one center 
run is shown on the same graph. It is of interest to 
determine the locations of the maximum variance as 
a function of r. Figure 4 shows the locations in the 
four design variables. The figure indicates that the 
point at which N var y(x)/a2 is maximum in, say, a 
spherical region of interest of radius 2 from the design 
center is given by xl = 1.50, x2 = -1.20, x3 = 

- .561, and x4 = .094. Suppose that we wish to study 

20- 

, 15- 
z 

Ic 
4 >- in 

1.50 

^O: 0 ^^X^^^ ^A 4 4 44 4 4 4 4 4 04 ?4 0.094 

C:-z ? 3 3 3 -0.561 

-1.20 

-2: 
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

RADIUS 

Figure 4. Locations of Maximum Prediction Variance on 
Spheres for the Two-Level First-Order Design Given by Equa- 
tion (2.9). For a location on a given sphere of radius r, 1 
denotes the value of the variable x,, 2 denotes the value of 
the variable x2, 3 denotes the value of the variable x3, and 4 
denotes the value of the variable x4. 

the effect of an augmentation of the design, in which 
an additional point is taken at these coordinates. 
Figure 5 illustrates the increase in efficiency for the 
augmented design. Please note that as in all other 
cases the prediction variance is weighted by sample 
size. 

The plot of the VDG for the augmented design 
shows only a moderate decrease in the average vari- 
ance Vr but a dramatic improvement in the maximum 
prediction variance throughout most of the design 
region. There is a 45% reduction in the maximum 
prediction variance at the design perimeter. The ex- 
ample illustrates a graphical look at gain provided 
by augmenting an RSM design through an augmen- 
tation procedure such as DETMAX (Mitchell 1974). 
The point chosen is that which most enhances the 
variance-covariance properties of the coefficients- 

w 

c3 z 

cc 

0. 
0 1 2 

RADIUS 

Figure 3. Variance Dispersion Graph for the Two-Level 
First-Order Design Given by Equation (2.9). Spherical vari- 
ances for a 24 are denoted by -*-. Variances are weighted 
by sample size (N = 17). 

0 1 2 
RADIUS 

Figure 5. Variance Dispersion Graphs for the Two-Level 
First-Order Design and for the Same Design With a Design 
Point Augmented. Variances for the augmented design are 
represented by -A-. Variances are weighted by sample size 
(N = 17, N = 18). 
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the point at which var 9(x) is maximized-and the 
resulting VDG graphically shows the improvement. 
Certainly any enhancement of the stability of pre- 
diction variance can be easily digested by the user. 
Incidentally, the user can focus on the improve- 
ment provided by the augmentation in terms of 
G-efficiency. A G-optimal design has max N var 
y(x)/cr2 = 5. The design before augmentation gives 
max N var y(x)/c2 = 22.5 (22.2% efficiency), and 
the value is reduced to approximately 12.6 (39.7% 
efficiency) after augmentation. 

2.5 Properties of the VDG for the First-Order 
RSM Model 

For the case 1 situation, there are interesting yet 
predictable properties that are apparent for Vr and 
R of V(r). From Equation (2.4) it is apparent that 
the rate of change of Vr with respect to r is positive 
and increases as r increases. Thus the average pre- 
cision with which one estimates the response dimin- 
ishes as one predicts further from the center. This also 
is true for case 2, as one can readily observe by the 
development of Vr in Appendix B. 

From Equations (2.5) and (2.6), we observe for 
case 1 that both the maximum and minimum of the 
variance function are increasing functions of r. When 
the design is not optimal in a variance sense [equal 
eigenvalues of (X'X)-1], however, the max N var 
p(x)/ca2 increases faster than min N var 9(x)/l2, with 
the rate of change of R of V(r) being given by 

a R of V(r) = 2Nr(2max - Imin)- ar 

Thus as one might expect, the increase in instability 
in prediction variance on spheres (as quantified by 
the range) is greater for designs with a large spectrum 
in eigenvalues of (X'X)-1. 

3. SECOND-ORDER 
DESIGNS-ILLUSTRATIONS 

In this section, illustrations of the use of variance 
dispersion graphs are given for second-order re- 
sponse surface designs. We will use example displays 
to illustrate how the user can easily answer very prag- 
matic questions that deal with the performance of 
both standard and nonstandard designs. 

The general expression for Vr given in Equation 
(2.2) applies for the second-order case. As a result, 
the Vr plot is certainly accessible for any second- 
order design. For the illustration of the range in the 
variance function, the function N var y(x)/ca2 was 
maximized and minimized over locations on the sur- 
face of a hypersphere. For the illustrations presented 
here, the computation was accomplished with a 
FORTRAN-based computing algorithm that com- 

putes the maximum and minimum of the variance 
function on a sphere. The algorithm, available on 
request (Vining 1988), also provides coordinates de- 
scribing the location at which the maximum and min- 
imum occur. This algorithm is adaptable to both first- 
order and second-order designs. 

The search algorithm currently has the capability 
for handling designs through k = 7 variables. VDG's 
for three- or four-variable designs for a second-order 
model take roughly five seconds of central processing 
unit (CPU) time using an IBM 3084 processor com- 
plex. Evaluation of a five-variable design requires 
approximately one minute. A seven-variable case re- 
quires roughly five minutes of CPU time. In many 
situations, multiple locations exist for the maximum 
value of the variance on a particular sphere. As in 
the case of many optimization routines in which one 
has nonlinear equality constraints and the objective 
function is this complex, there is no guarantee of 
finding the global optimum. The regions exploited 
by the algorithm are spherical and cuboidal. 

In Section 3.1, we use the VDG to compare var- 
ious competing RSM designs. We also illustrate how 
the graphical procedure can be used to assess the 
impact of missing design points and answer other 
questions that often occur when one plans response 
surface experiments. 

3.1 Hybrid and Small Composite Designs 

A useful class of economical second-order RSM 
designs are the small composite designs (SCD) (see 
Draper 1982; Hartley 1959; Westlake 1965). Lucas 
(1976) provided an efficiency comparison of the small 
composite with other designs. The design consists of 
a Resolution III fraction of a 2k factorial along with 
star or axial points and center runs. The resulting 
design is either saturated or near-saturated. Reason- 
able competition for the SCD is the class of hybrid 
designs developed by Roquemore (1976). The hybrid 
designs are also economical and represent a central 
composite type array for k - 1 variables with the 
levels of the kth variable selected to create certain 
design symmetries. The hybrid designs used in this 
illustration are the hybrid 310 and 311B developed 
by Roquemore. In each case, k = 3 and the design 
contains one center run. Both designs contain 11 
runs. We have included one center run in the 310. 
The 311B, as originally developed by Roquemore, 
already contained a center run. The axial or star level 
on the SCD is a = 1.732. All three designs are scaled 
so that the design perimeter is at radius X3. Khuri 
(1988) and Draper and Guttman (1988) discussed the 
hybrid in studies of measures of deviation from ro- 
tatability. Both hybrid designs and the SCD are 
shown in Table 1. Let us initially consider Figure 6, 

TECHNOMETRICS, MAY 1989, VOL. 31, NO. 2 

164 



GRAPHICAL ASSESSMENT OF RESPONSE SURFACE DESIGNS 

Table 1. Design Matrices for the Hybrid 310 and 311B Designs and for a Small Composite 
Design With a = 1.732 

310 311B SCD 

0 0 1.2906 0 0 \6 1 1 1 
0 0 -.1360 0 0 -/6 1 -1 -1 

-1 -1 .6386 -.7507 2.1063 1 -1 1 -1 
1 -1 .6386 2.1063 .7507 1 -1 -1 1 

-1 1 .6386 .7507 -2.1063 1 1.732 0 0 
1 1 .6386 -2.1063 -.7507 1 -1.732 0 0 
1.1736 0 -.9273 .7507 2.1063 -1 0 1.732 0 

-1.1736 0 -.9273 2.1063 -.7507 -1 0 -1.732 0 
0 1.1736 -.9273 -.7507 -2.1063 -1 0 0 1.732 
0 -1.1736 -.9273 -2.1063 .7505 -1 0 0 -1.732 
0 0 0 0 0 0 0 0 0 

NOTE: For the illustration of Section 3.1, the design matrices have been scaled to have the furthest design point on a radius 
of = 1.732. 

which shows the plot of Vr, the average N var 9(x)/ 
a2 for the three designs. This interesting comparison 
reveals that both hybrid designs perform better, on 
the average, than the SCD. The graphical procedure 
also points out that the hybrid 310 design is consid- 
erably better than both competitors inside a radius 
of approximately 1.2. Near the design perimeter, 
however, the 311B has smaller values of the spherical 
variances. 

Figure 7 shows the VDG reflecting the maximum 
and minimum of N var 9(x)/a2 around Vr for the 
SCD and the hybrid 310. (Note that we have now 
dropped the Vr symbol on the graph.) Figure 8 gives 
the same graph for the hybrid 311B and hybrid 310. 
None of the three designs show dispersion near the 
design center. The SCD, however, shows serious dis- 
persion as one moves beyond radius 1.0. By contrast, 

25- 

20. 

CJ 

15.- 

e 10. 

C - 

both hybrids display more stability. The overall per- 
formance of the hybrid 310 is superior to that of the 
311B until one nears the design perimeter. The pre- 
diction capability of the 310 is obviously inferior to 
the 311B beyond a radius of 1.2. The G-efficiency 
for the 311B is 91% as opposed to 45% for the 310. 
It is interesting here that the 311B clearly has a con- 
siderably higher G-efficiency, but this criterion does 
not reflect the superiority of the 310 in the design 
interior. The G-efficiencies of the two hybrid designs 
as depicted in the figure agree with values given by 
Roquemore. 

3.2 Central Composite Design and 
Box-Behnken Design 

The central composite and Box-Behnken designs 
are natural competitors as second-order RSM de- 
signs. Here we graphically compare the performance 
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Figure 6. Comparison of Spherical Variances for an SCD 
and Hybrid 310 and 311B Designs. Design S is an SCD with 
a = 1.732, N = 11, and one center run; design H is a hybrid 
310 design with N = 11 and one center run; and design B is 
a hybrid 311B design with N = 11 and one center run. Vari- 
ances are weighted by sample size. 
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Figure 7. Variance Dispersion Graphs for an SCD and a 
Hybrid 310 Design. Design S is an SCD with a = 1.732, N = 
11, and one center run; design H is a hybrid 310 design with 
N = 11 and one center run. Variances are weighted by sample 
size. 
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Figure 8. Variance Dispersion Graphs for a Hybrid 310 De- 

sign and a Hybrid 311B Design. Design H is a hybrid 310 

design with N = 11 and one center run; design B is a hybrid 
311B design with N = 11 and one center run. Variances are 

weighted by sample size. 

of the central composite with axial parameter a = 
1.0 and a = 1.682 and the Box-Behnken design. All 
three are k = 3 designs containing four center runs 
for this illustration. Figure 9 displays the spherical 
variances. Each design has been scaled so that the 
points on the design perimeter are at a distance 
V/. The a = 1.682 design is the rotatable central 
composite design (CCD). It is clear that, on the av- 
erage, the performances of the rotatable CCD and 
the Box-Behnken design are nearly identical. As 
expected, the a = 1.0 central composite predicts best 
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Figure 9. Comparison of Spherical Variances for Two 
CCD's and a Box-Behnken Design. Design R is a rotatable 
CCD with a = 1.682, N = 18, and four center runs; design 1 
is a CCD with a = 1.0, N = 18, and four center runs; and 
design B is a Box-Behnken design with N = 16 and four 
center runs. Variances are weighted by sample size. 

near the design center. To complete the comparison, 
Figures 10 and 11 display the dispersion around Vr 
for the Box-Behnken design and the a = 1.0 CCD. 
Again, all variances are weighted by sample size. Of 
course, the rotatable a = 1.682 CCD will have zero 
dispersion around Vr. The stability of the Box-Behn- 
ken design around Vr is quite good. On the other 
hand, the R of V(r) is quite large for the CCD with 
a = 1.0, particularly beyond a radius of 1.0. This is 
certainly expected, since there is less information 
beyond radius 1.0 than in the case of the other two 
designs. This underscores the notion that a CCD with 
a = 1.0 should be used when the region of interest 
is strictly cuboidal rather than spherical. The design 
should not be used for predicting response outside 
the cube that describes the design. To make a more 
reasonable assessment of the a = 1.0 CCD, we offer 
Figure 12, in which the max N var y(x)/a2 and min 
N var 9(x)/a2 were computed with the additional 
restriction that for any radius exceeding 1.0 the lo- 
cations of the variances are restricted to being inside 
a unit cube. This picture best describes the perform- 
ance of the design when prediction is restricted to 
the cube. Here the design performance is much bet- 
ter than that reflected in Figure 11. 

3.3 Loss of Data Points: The Central 
Composite Design 

Our next illustration of the VDG deals with an 
analysis of the impact of missing design points in an 
RSM design. The object of our illustration is a three- 
variable rotatable CCD (a = 1.682) with two star 
points missing-namely, (-1.682, 0, 0) and (0, 0, 
1.682). Three center runs are used in the resulting 
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Figure 10. Variance Dispersion Graph for a Box-Behnken 
Design With N = 16 and Four Center Runs. Variances are 
weighted by sample size. 
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Figure 11. Variance Dispersion Graph for a CCD With a = 
1.0, N = 18, and Four Center Runs. Variances are weighted 
by sample size. 

design. Figure 13 shows the VDG for the incomplete 
design and the Vr for the complete design. It is in- 
teresting that for predicting responses within a radius 
of about .7 the loss of the data points has little impact 
on quality. (The apparent advantage of the incom- 
plete design is a result of weighting with sample size.) 
It is obvious that the deterioration in average per- 
formance is fairly modest. Nevertheless, the plot 
shows considerable instability as one moves away 
from the design center. The dispersion (as quantified 
by the range in variance) reveals how fragile the 
prediction has become due to the loss of information. 
This suggests that the loss of information does not 
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Figure 12. Maximum and Minimum Prediction Variances 
for a CCD With a = 1.0, N = 18, and Four Center Runs. 
Locations of the variances are restricted to be on or within 
the unit cube. Variances are weighted by sample size. 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 
RADIUS 

Figure 13. Variance Dispersion Graph for a CCD With Two 
Star Points Missing, a = 1.682, N = 15, and Three Center 
Runs. Spherical variances for the complete CCD (N = 17) are 
denoted by -*-. Variances are weighted by sample size. 

result in uniform damage. This type of plot can pro- 
vide the user with a simple picture that reveals the 
extent of the problem with missing data. 

4. SUMMARY 

It is important to point out that the illustrations 
given here are only illustrations and not definitive 
studies. The VDG approach has potential in the area 
of regions other than spherical and cuboidal-for 
example, the simplex region in the case of mixture 
designs. Exhaustive case studies involving standard 
RSM designs are difficult to report without displaying 
at least a few graphs. Conclusions found in compar- 
isons between classes of designs depend sharply on 
values of design parameters, including the number 
of center runs. This is particularly true when one 
deals with rotatable or near-rotatable designs. It is 
our experience that the VDG for classes of saturated 
or near-saturated designs changes dramatically with 
a single augmentation. Moreover, what is a good 
picture for one user may not be attractive for another 
because of a priori knowledge concerning where in 
the design space one anticipates the need to explore. 

Based on observations drawn up to this point, we 
offer the following: 

1. For spherical regions, the rotatable CCD and 
the Box-Behnken design compare very favorably. 
The CCD, as expected, benefits greatly from two or 
three center runs, but the Box-Behnken design cer- 
tainly should contain two center runs to achieve an 
attractive variance picture. 

2. Using a considerably smaller than the rotatable 
value for the CCD results in poor prediction per- 
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formance close to the design perimeter in the case 
of a spherical region. For example, for k = 3 with 
a as small as 1.35, the maximum value of N var P (x)/ 
a2 increases by as much as 40% above that of the 
rotatable design or the equiradial design. The ad- 
vantage experienced at the design center with the 
use of a smaller a is minimal when the design contains 
at least three center runs. 

3. Roquemore's hybrid designs appear to be very 
promising; this includes the six-variable 628A, which 
is not discussed here. They are all very near rotatable 
(or exactly rotatable) and are generally benefited 
greatly by augmentation with one or two extra center 
runs. 

There is considerable potential in the area of de- 
sign augmentation-that is, determining graphically 
the nature of the gain produced by augmenting a 
design. In addition to a graphical depiction of design 
capability, the VDG graphically allows for a se- 
quential (interactive) generation of D-optimal de- 
signs. There is considerable interest in the benefit of 
replicating at locations other than the design center. 
This approach can be used to assess the advantage 
of replicating axial points, for example, rather than 
center points. 

Interesting information regarding robustness of 
RSM designs to errors in controlling design levels 
can easily be retrieved. One merely displays the 
VDG of the design in question and compares with 
the "ideal"-that is, the "target" design. The ap- 
proach discussed here can be adapted to accommo- 
date situations involving anticipated outliers, failure 
of homogeneous variance assumptions, other forms 
of estimation, and so forth. Studies of the impact of 
center runs and replication at other design locations 
are easily undertaken. 

Some attention has focused lately on measuring 
nearness to rotatability of a design (see Draper and 
Guttman 1988; Khuri 1988). The R of V(r) measures 
dispersion on spheres, depicting deviation from ro- 
tatability. For example, this notion is nicely illus- 
trated in the graphics displayed in the Box-Behnken 
and the hybrid designs. Clearly the hybrid 311B and 
the k = 3 Box-Behnken designs are very close to 
being rotatable according to the relatively small R 
of V displayed in the pictures. 

Variance dispersion graphs allow the user of an 
experimental design to view a "footprint" that de- 
scribes the performance throughout a region in which 
responses are to be estimated. The analyst can de- 
termine, for example, the severity of the deteriora- 
tion of prediction capability close to the design or 
region perimeter. Comparison among competing de- 
signs can be made easily, and strengths and weak- 
nesses can be assessed; this type of information 

cannot be captured in single efficiency numbers. 
A catalog of VDG's for commonly used response 

surface designs has been prepared (see Myers, Gio- 
vannitti-Jensen, and Vining 1989). This catalog shows 
the effect of design parameters and provides the user 
an aid in choosing a design. 

APPENDIX A: SPHERICAL 
REGION MOMENTS 

A.1 Spherical Region Moments Through 
Order 4 

Spherical region moments are used in the devel- 
opment of model-specific forms for the spherical 
variance and for the variance of N var( (x))/a2 for 
locations on the surface of a hypersphere defined by 
Ur = {x : k=l x2 = r2}. A spherical region moment 
of order 6 is defined to be 

o,'2'*"*k = 
fv x6X2 ... X k dx, 

where T- = fr dx is the surface area of U, and 
ik_, 6i = 6. Since Ur is a symmetric region, the 

spherical moment o,o2...okis 0 whenever any 6i is odd. 
The spherical region moments that are used in the 

development of the spherical variance for the first- 
order and second-order model cases are the second- 
order and fourth-order spherical moments given by 

r2 
O2 = f x2 dx = r- 

3r4 
J4 = ?t X4 dx = k(k+ 2)' 

k(k + 2) 
a22 = tit Xl2X? dx = r 

A.2 The Spherical Region Moment Matrix for 
First-Order and Second-Order Models in 
Three Variables 

To illustrate the form of the spherical region mo- 
ment matrix S in the definition of Vr [Eq. (2.2)] 
consider a first-order model in k = 3 variables. In 
this case, evaluation of (2.3) gives 

1 0 
0 '2 S = 
0 0 
0 0 

0 0 
0 0 
U2 0 
0 '2 

with 02, the second-order spherical moment, defined 
in Section A.1. 

For a second-order model in k = 3 variables, the 
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matrix of spherical region moments is 

s= 

X, X2 X3 XI X2 X3 X1X2 X1X3 X:Xx 

X1 

X2 

x12 
xi 
x2 Xi2 

XX3 

XIX3 

X'X3 

1 
0 
0 
0 
2, 

0 

0 
0 

0 
0 

0 

0 
0 
0 
0 
0 
0 

o 

0 
0 
0(2 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
o 

a-2 

0 
0 
0 
0 
0 
o 

0'2 

o 
0 
0 
(74 

211 

0-22 

0 
0 
0 

0 

0 
0 

(1 

.4 

0'22 

0 
0 
0 

?(2 

0 
0 

0 

0-22 

174 

0 

0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 

o 

0 
0 
0 
0 
0 
0 
0 
0 

('22 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 

022 

with a2, a4, and 22 as defined in Section A.1. 

APPENDIX B: DEVELOPMENT OF THE VDG 
FOR THE FIRST-ORDER MODEL 

B.1 Development of the Spherical Variance 
Under Case 1 

Suppose a first-order model in k variables is fit to 
the response with a design centered about the cen- 
ter of the region of interest (case 1). Let x = 
(xlx2 .. Xk)' be a setting of the levels of the variables 
x,, x, ... , Xk. Partition the N x (k + 1) model 
matrix X by [1 X*] where 1 is an N x 1 vector of 
ones and X* is the N x k design matrix. The first- 
order model can be written as E(y) = XB, where 
P = (f0f1 .. fik)' is the vector of regression coeffi- 
cients of the first-order model. 

In the present discussion, the columns of the sub- 
matrix X* are centered so that = 1 x,i = 0 for all 
j = 1, 2, . . . , k. In this way, the vector of ones in 
X is orthogonal to the submatrix X*. Thus 

(X'X = 1/N O' (Xt X) 
- 

0 (X*'X*)- 

Consider the eigenvalue decomposition of 
(X*'X*)-'. Define P to be the k x k orthogonal 
matrix for which P'(X*'X*)-'P = A, where A = 

diag(X1, 22, . . . , ik) is the diagonal matrix contain- 
ing the eigenvalues of (X*'X*)-l. The variance of 
a predicted response for case 1 can be written as 

1 
var( (x)) = a2 N + x'PP'(X*'X*) -PP'x 

k 

= a2 N + iz2 ' 
(B.1) 1 1 

where z = (ZIZ2 '. zk)' = P'x. Note that i=l z4 = 
z'z = x = = ik x;2. Thus, for any point x located 
on Ur, z = P'x is also on Ur. 

Under case 1 then, the average of the variances 
of the estimated responses over the surface of the k- 
dimensional hypersphere defined by Ur, the spherical 

variance given by (2.1), is 

Vyr = r 
1 +(i? 

k 
vr = AP 1 + NE 

Jur \/i=1 
iZi2) dz 

r2 k 
1 +N ii 

i=1 

B.2 The Maximum and Minimum Prediction 
Variance On a Sphere Under Case 1 

To find a specific form for the R of V under the 
specifications of case 1, it is necessary to find the 
optimum values for N var(P(x))/a2 when x is in Ur. 
From Section B.1, var(p(x))/a2 is given by Equation 
(B.1) under case 1. The coefficients, Al, . , . k, of 
the variables in the function are the eigenvalues of 
the full rank matrix (X*'X*)-~ and hence positive. 
For convenience, suppose that the variables are or- 
dered in such a way that 0 < Amin = - '1 '2 < *" I 

=k = Imax' 

First consider the case in which the eigenvalues 
are all distinct; that is, 0 < A2 < 22 < *. < 2k. 
To maximize (B.1) subject to the condition that 
S^i xf = i =1 z2 = r2 requires that the variable 
whose coefficient is the largest-that is, the variable 
that has the highest weight-be as large as possible. 
Thus, for the first-order case, the maximum variance 
of prediction on Ur occurs for Zk = +r and zl = z2 
-= ' = zk-l = 0 to achieve k=,l Z = r2. The 
corresponding maximum is 

N 
max - var( p(x)) 
xeUr 

k - 

=max 1 + N ii = 1 + Nmaxr2, 
zEU _ i= 

where ,max is the largest eigenvalue of (X*'X*)-l. 
In a similar fashion, we can show that 

N 
min - var()(x)) 

- k - 

= min 1 + N ,iz2 = 1 + Nminr2 
zeUr _ 1i=1 

where 'min is the smallest eigenvalue of (X*'X*)-l. 
When two or more of the eigenvalues are the same, 

the maximum and minimum values may occur at 
more than one point on Ur. The resulting optimal 
values, however, remain the same. As an illustration, 
consider Amin = Al = 42 and all other eigenvalues 
distinct. Clearly, the maximum prediction variance 
at locations on Ur is as before. The minimum, how- 
ever, may occur at any point on Ur for which z2 + 
z2 = r2 and, hence, Z3 = *** = 0. The corre- 
sponding minimum value though is 1 + NAminr2, 
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where 2min =- 1 = 12 is the smallest eigenvalue of 
(X*'X*)- . So the optimum values of the prediction 
variance on Ur are not effected by multiplicities in 
the eigenvalues of (X*'X*)-1. 

B.3 Development of the Spherical Variance 
Under Case 2 

Let us define the location of the center of the de- 
sign to be h = (hhI2 '" hk)'; the center of the region 
is 0 = (0 0 ..- 0)' in the design variables. When h $ 
0, the columns of the submatrix X* are not centered. 
It will prove useful to consider a translation of the 
axis system corresponding to the design variables x1, 

2, . .. , xk to an axis system with origin at the center 
of the design. Call the variables in the new axis sys- 
tem wi, w2, . . , Wk, where wi = xi - hi and i = 
1,2, ... ,k. 

In terms of the w variables, the variance of a pre- 
dicted response at a point w = (ww2 *.* wk)' = x - 
h is given by var(P(w)) = a2f'(w)(W'W)-1f(w), 
where f(w) = (1 w)' and W = [1 W*]. The N x 
k submatrix W* is analogous to the submatrix X* in 
case 1 (see Sec. B.1). In this case, the columns of 
W* are centered versions of the corresponding col- 
umns of X*. Using the development of case 1 for a 
prediction variance at a location in the w-axis system, 
var(y(w)) = U2[1/N + w'(W*'W*)-lw]. 

It will be convenient to express the prediction vari- 
ance in terms of the eigenvalues of the (W*'W')-l 
matrix. Let P be the k x k orthogonal matrix of the 
eigenvalue decomposition of (W*'W*)-l. Then 

1 
var(9(w)) = a2 - + z'Az - 2z'Am + m'Am N 

1 k = (2 _+ Zi N i=l 

k k - 

- 2 ,imizi + E im2 , (B.2) 
i= i=l 

where z = (z1z2 * -. Zk)' = P'x and m = (m,m2 . 
mk)' = P'h. A = diag(AI, , 2 .. , 2k) is the 
diagonal matrix containing the eigenvalues of 
(W*'W*) -. Note that if the design is centered about 
the origin of the region in the design variables-that 
is, if h = 0-this formulation reduces, as it should, 
to the expression given in (B.1). 

Consider the evaluation of Vr in the w-axis system. 
The prediction variances to be averaged in this case 
correspond to locations w = (w1w2 .* Wk)' on the 
surface of the hypersphere of radius r with center at 
w = 0 - h. Let Uw = {w : (Si (wi + hi)2 = r2} 
denote the surface of this hypersphere and T1w = 

fu,r dw be the surface area of Ur. Then, 

Vr =N Nw f var( 9(w)) dw 

k k 

o" Jur ( i 
k k 

- 2 E Ximizi + E ~imi2 dz 
(i= 1 i= 1 

r2 k k 
= 1 + Nk- i + NE im2 

by a transformation of variables and (B.2). The in- 
terim steps required in this formulation appear in 
Giovannitti-Jensen (1987). 

B.4 The R of V Under Case 2 

When the center of the design is not the same as 
the center of the region, the problem of optimizing 
N var()(x))/a2 subject to x = (xlx2 " Xk)' being 
on the surface of a hypersphere of radius r centered 
at x = 0 is equivalent to the constrained optimization 
of N var(P(w))/c2 in the w variables. In terms of 
the w-axis system defined in Section B.3, the con- 
straint requires that the point w = (WW2 ' Wk)' lie 
on the surface of a hypersphere of radius r with center 
at w = 0 - h. 

Using the method of Lagrangian multipliers for 
finding the stationary points of a function, the max- 
imum and minimum values are found by solving the 
following set of simultaneous equations: 

oQ _ 0aQ 
' = 0, - = o ... 

dwl a W2 
OQ _ O, OQ 

aWk 0a 0, 
aWk a/ 

where 

N - k 
Q = - var(y(w)) - 2 

E (wi + hi)2 r2 

= 1 + Nw'(W*'W*)- w 

- /[(w + h)'(w + h) - r2], 
and u is the Lagrangian multiplier. The solution to 
this problem appears in Giovannitti-Jensen (1987). 

[Received March 1988. Revised November 1988.] 
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