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Abstract 

By combining a modified version of Hooke and Jeeves’ pattern search with exact or Monte Carlo moment 

calculations, it is possible to find I-, D- and A-optimal (or nearly optimal) designs for a wide range of 

response-surface problems. The algorithm routinely handles problems involving the minimization of 

functions of 1000 variables, and so for example can construct designs for a full quadratic response-surface 

depending on 12 continuous process variables. The algorithm handles continuous or discrete variables, 

linear equality or inequality constraints, and a response surface that is any low degree polynomial. The 

design may be required to include a specified set of points, so a sequence of designs can be obtained, each 

optimal given that the earlier runs have been made. The modeling region need not coincide with the 

measurement region. The algorithm has been implemented in a program called gosset, which has been used 

to compute extensive tables of designs. Many of these are more efficient than the best designs previously 
known. 
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1. Introduction 

This paper presents a new algorithm for constructing experimental designs. The 

algorithm, described in Section 3, has the following features. 

(a) The variables may be discrete or continuous (or both - none of these choices 

are mutually exclusive), discrete variables may be numeric or symbolic, continuous 

variables may range over a cube or a ball, and the variables may be required to satisfy 

linear equality or inequality constraints (so mixtures and constrained mixtures can be 

handled). 

(b) The model to be fitted may be any low degree polynomial (for example 

a quadratic response-surface). 
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(c) The number of runs is specified by the user (so minimal designs present no 

difficulty). 

(d) The design may be required to include a specified set of points (so a sequence of 

designs can be found, each of which is optimal given that the earlier measurements 

have been made). 

(e) The region where the model is to be fitted need not be the same as the region 

where measurements are to be made. (So for example designs can be optimized for 

modeling over a continuous region even if the measurements are constrained to 

a disvtrete set. Designs for extrapolation can be obtained in a similar way). 

(f) The algorithm is capable of minimizing any optimality criterion that is differen- 

tiable or can be approximated by a differentiable function. We have focused on four 

such criteria, I-, A-, D- and E-optimality, with a distinct preference for the first, which 

minimizes the average prediction variance (see Section 2). The I-optimality criterion 

requires knowledge of the moments of the design region, and the algorithm finds these 

moments either from the exact formulae or by Monte Carlo estimation. 

(g) The user has control over how much effort is expended by the algorithm, and 

can if desired monitor the progress of the search. It is not necessary to specify initial 

points for the search. 

(h) The algorithm can be used in situations in which the errors, rather than being 

independent, have a known correlation matrix. 

The algorithm appears to be powerful enough to find optimal or nearly optimal 

designs involving as many as 1000 continuous variables, for example a full quadratic 

response-surface design depending on 12 process variables. Its effectiveness decreases 

as the number of discrete variables increases. However, the algorithm has-found 

D-optimal main-effect designs involving 20 2-level factors (i.e., with 420 discrete 

variables). 

No individual ingredient of our algorithm is new. But although computers have 

been used by many people to construct experimental designs (surveys of such work 

can be found for example in Box and Draper, 1987, Chap. 15; Cook and Nachtsheim, 

1980; Dodge et al., 1988; Lucas, 1976; Myers et al., 1989; Nachtsheim, 1987; St. John 

and Draper, 1975; Steinberg and Hunter, 1984; Yonchev, 1988) we believe that no 

algorithm comparable to ours is presently available. 

Implementation 

We have implemented the algorithm in the C language in a program called gosset. 

A built-in parser permits a very flexible input. A brief description is given in Section 4, 

and further details can be found in the users’ manual, Hardin and Sloane (1992). 

The program is named after the amateur mathematician Thorold Gosset 

(1869-1962) who was one of the first to study polytopes in six, seven and eight 

dimensions (Coxeter, 1973, p. 164) and his contemporary, the statistician William 

Seally Gosset (1876-1937) who was one of the first to use statistical methods in the 
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planning and interpretation of agricultural experiments (Pearson and Wishart, 1942). 

Although from our geometric viewpoint their work is related, we do not know if the 

paths of Thorold (Cambridge, London, lawyer), and William Seally (Oxford, Dublin, 

brewer) ever crossed. 

Applications 

So far there have been two main uses for gosset. 

(i) We have attempted to construct optimal (especially Z-optimal) designs 

for a number of ‘classical’ situations, for example linear, quadratic or cubic response- 

surface designs with k continuous variables in a cube or ball with n runs, over 

quite a large range of values of k and n, typically 1 d k d 12 and IZ ranging from 

the minimal value to 6 (or more) greater than the minimal value. We have also 

computed designs for similar models and regions in which the variables are discrete. 

An extensive library of these designs is now built into gosset. Our work on these 

‘classical’ problems can be regarded as an attempt to provide optimal ‘exact’ designs 

with small numbers of runs to complement the ‘asymptotic’ designs of Kiefer et al. 

(Farrell, Kiefer and Walbran, 1967; Galil, 1985; Galil and Kiefer, 1977a, b, 1979, 

1980a, b, c, 1982a, b). 

As we shall see in Section 5, some of these designs overlap with and improve on 

designs already available in the literature. Other designs we have found will be 

published elsewhere (see Hardin and Sloane, 1992a, b, c, d). 

We have also used this collection of designs as data for theoretical investigations. 

Two results are worth mentioning here. 

(a) There is a simple lower bound on the average variance of an I-optimal design 

for quadratic models with n measurements in a k-dimensional ball (see 

equation (13) below). A number of interesting designs meet the bound. There 

is a similar bound for D-optimal designs. 

(b) It is known that for large numbers of runs D- and G-optimal designs are 

equivalent (Kiefer and Wolfowitz, 1960). The results of Section 5 show that 

I-optimal designs are strictly different. For example, Z-optimal designs make 

more measurements at the center of the region and fewer at the boundary. 

For quadratic models in a k-dimensional ball, k large, an I-optimal design 

makes about 4/k’ of the measurements at the center of the sphere, compared 

with about 2/k’ for D- and G-optimal designs. I-optimality also appears to be 

a more strict condition than D-optimality. In situations where the criteria 

produce similar designs (such as certain linear designs, see Section 5.3), we 

commonly find that although I-optimal designs are D-optimal, the converse 

is not necessarily true. 

(ii) We have constructed designs for a number of industrial applications, for 

instance problems involving continuous and discrete variables simultaneously, with 

linear constraints on the variables (see Section 5.4). 
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We must emphasize that the theoretical justification for our designs (see Section 2) 

depends strongly on the validity of the particular model being used. We are assuming 

that the investigator has carried out some exploratory investigations (for example 

a screening design) and has identified a region where it is plausible to describe the 

response by a low degree polynomial. (Of course the design points when the initial 

measurements have been made can be incorporated by our program in the next design 

- see Section 4.) 

This work began in 1990 when a statistician in Seattle, David H. Doehlert, wrote to 

one of us asking if we could construct designs for a full quadratic response-surface 

depending on k variables in a sphere, where k is between 3 and 14, and in which the 

number of runs is minimal or close to minimal. We had been using the pattern search 

algorithm in studying the Tammes problem of placing M points on a k-dimensional 

sphere so they are well-separated (Hardin et al., 1993) and we found that a similar 

approach could be used for constructing designs. 

2. Choice of optimality criterion 

Extensive discussions of the relative merits of A-, D-, E-, G- and I-optimality and 

of the dangers of relying on any single numerical criterion have appeared in 

the literature (see for example Box and Draper, 1987, 1971; Giovannitti-Jensen 

and Myers, 1989; Kiefer, 1985; St. John and Draper, 1975), and our treatment will 

be brief. 

Suppose for concreteness that we wish to construct a design for a full quadratic 

response-surface model 

_Y=PO+iil Pixi+iil Piixf+‘il i Bijxixj+G 

i=l j=i+l 
(1) 

where there are k variables x1,..., xk, P=+ (k+ 1) (k +2) unknown coefficients p, and 

the errors E are independent with mean 0 and variance c?. Let the design consist of 

n > p points 

[xjl,...,xjk] for 1 <j<n, (2) 

chosen from a certain region of measurement (or operability) 0. Let X be the n x p 
expanded design matrix, containing one row 

for each design point x = [x1,. . ., xk], and let 

M,,1 X’X 
n 
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denote the matrix of moments of the design measure (the prime indicates matrix 

transposition). The prediction variance at an arbitrary point x is 

var j(x) = gf (x) M; ‘f(x). 

We define an I-optimal design (following Box and Draper, 1963,1987; and others) to 

be one which minimizes the normalized average or integrated prediction variance 

I=$ s var P (4 dp (4, 
R 

where R is the region of interest (or modeling region), and p is uniform measure on 

R with total measure 1. This integral simplifies (cf. Box and Draper, 1987, p. 341) to 

give 

I = trace {MM, ’ }, (4) 

where 

M = 
s 

f(x)‘f(x) d/M 
R 

(5) 

is the moment matrix of the region of interest. 

In contrast, A-, D-, E- and G-optimal designs are those which minimize 

A=trace M;‘, (6) 

D = { det M,} - ‘lp, 

E = maximal eigenvalue of M; ‘, 

(7) 

(8) 

G = maximal value of varf(x), x E R, (9) 

respectively. We shall refer to the quantities defined in (4), (6)-(9) as the I-, A-, etc., 

values of the design. As the number of runs n-00, these quantities approach limits 

I,, A,, etc., and the I-, A-, etc. efJiciencies of the design are given by 

1, A, D, E, G, --- 
TA’D’ E’ G (10) 

(cf. Atwood, 1969; Lucas, 1976). 

We are most interested in minimizing the prediction variance, var?(x), for 

x E R, which suggests the use of I-, or G-optimality. On the other hand our algo- 

rithm requires that the criterion be differentiable, which holds for A-, D- and I- but 

not G-optimality. (We obtain E-optimality as a limit.) Furthermore we wish to be able 

to construct designs for which the measurement region 0 and modeling region R are 

distinct, which also picks out the I- or G-criteria (since the A-, D- and E-criteria do not 

involve R). We have therefore chosen I-optimality as our primary criterion. However, 

the implementation of the algorithm allows the user to search for any of I-, A-, D- or 

E-optimal designs. 
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It is worth mentioning that the Z-value (equation (4)) is a dimensionless quantity. 

Also, provided the model has the property that if it contains one monomial of degree 

d then it contains all possible monomials of degree d d, then the Z-value is unchanged 

if the variables are resealed or if an orthogonal transformation is applied to the 

variables. In contrast the A- and E-values of a design depend on the particular choice 

of coordinate axes used, a property which seems unsatisfactory. In the present paper 

we shall concentrate on I- and D-efficiencies. For the ball or cube it is not difficult to 

determine I, and D, exactly. In other cases we determined them empirically, by 

estimating the limiting values of I and D as the number of runs increases. We 

attempted to calculate I, and D, to at least three decimal places of accuracy. 

However, inaccuracies in I, and D, are not too significant, because they do not 

change the relative efficiencies of comparable designs. Note that a design is I- (or D-) 
optimal if it has the highest I- (or D-) efficiency for a given number of runs, and so 

a design can be optimal without being 100% efficient. 

To guard against the dangers of using any single number as a design criterion, we 

have plotted variance dispersion graphs (Giovannitti-Jensen and Myers, 1989; Vining, 

1990) for our designs; some examples will be found in Hardin and Sloane (1992a). 

These graphs show how the prediction variance varf^(x) varies over the region of 

interest, and also give the G-value of the design. 

We conclude this section by briefly mentioning some earlier papers that look for 

Z-optimal designs. 

Studden (1977) gives a method for constructing approximations to Z-optimal 

designs for l-dimensional problems. 

Haines (1987), Myer and Nachtsheim (1988), Crary (1991) and Snow and Crary 

(1991) all use simulated annealing to search for Z-optimal designs. This approach 

seems to be restricted to low dimensions and small numbers of design points, and 

furthermore is less successful at finding optimal designs than our approach. For 

example, gosset finds slightly different designs in two of the four cases shown in 

Figure 1 of Crary (1991). Meyer and Nachtsheim (1988) give several quite small 

examples where simulated annealing was unable to find the best designs known. One 

of these, a 17-run four-dimensional example, is described in Section 5.2 below. 

Crary’s (1991) program, Z-OPT, like ours, allows the measurement and modeling 

regions to be distinct. Z-OPT has a feature that gosset does not have at present, 

namely the ability to specify relative weights for points in the modeling region. 

3. The algorithm 

For a given model (such as (1)) involving k variables and p unknown coefficients, 

a design consists of n points (2) (not necessarily distinct) in the region 0. Let x be 

a vector specifying the coordinates of all the design points. We wish to choose the 

design vector x so as to minimize a certain differentiable function F(x). For Z-optimal 
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designs, F is the normalized average prediction variance I = trace MM, I, where M is 

the moment matrix of the region R (see (4), (5)), while for A- or D-optimality F is trace 

M,’ or {det Mx)-l’p (see (6), (7)). We let g(x) d enote the gradient VF (x), normalized 

to have length &. 

The regions 0 and R can be quite complicated. The present implementation (see 

Section 4) permits 0 and R to be a product of cubes, balls and finite sets, possibly 

intersected by hyperplanes and half-spaces. This includes simplices, of course, since 

these are intersections of cubes and hyperplanes. 

If there are no equality constraints in the problem then the design vector x is simply 

a concatenation of the individual points (2) of the design. When equality constraints 

are present we choose new, internal, variables to parametrize the space 0, and then 

x is a concatenation of the coordinates of the internal variables. 

If the region 0 is a simple connected space such as a ball, our basic strategy is to 

minimize F using a modified version of the Hooke and Jeeves (1961) pattern search. 

An excellent description is given by Beightler et al. (1979), and our discussion here will 

be brief. We have modified the algorithm to make use of the gradient of F. Roughly 

speaking, pattern search minimizes F by accelerating down the gradient, and setting 

the velocity to zero whenever the function does not improve. The velocity increases as 

long as improvements continue. 

We begin with an initial design vector X=X(‘), with velocity u’~‘=O. This initial 

design may be obtained by choosing n random points from 0, although in the 

implementation the user has the option of specifying x (‘) himself. We attempt to define 

the next vector by 

#+ 1) =X(i)+v(i+ 1) 

where the velocity vector u(~“) is given by 

(11) 

v(i+ 1) =a(i)--s8(x(i)), (12) 

for i 30, where s is the current step size. If F(x(‘+ ‘)) < F(x(‘)) the step is a success, we 

accept this value for x@+l), and repeat the iteration with s multiplied by 1.04. 

Otherwise we set uCi) =0 and try (11) and (12) again. If there is still no reduction in F, 
we divide the step size by 2, and if it is larger than some small accuracy limit, try (11) 

and (12) again. Otherwise we terminate this attempt, pick another starting design 

x(O), and repeat the whole procedure. Any particular sequence F (.d”‘), F (x”‘), 
F (d2)), . . . (a decreasing, hence bounded, sequence of positive numbers) is terminated 

either when the step size is less than some small accuracy limit, or (very rarely) when 

the number of steps exceeds a specified limit. After a specified number of attempts the 

algorithm terminates, returning the best and the most recent second-best designs 

found. 

Equations (11) and (12) must be modified when the design vector x(“) involves points 

near the boundary of 0 (either the natural boundary, for instance when 0 is a ball, 

cube or simplex, or a boundary imposed by a constraint on the variables). When this 
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happens, the components of the gradient vector crossing the boundary are simply 

zeroed before normalization, and if any point in x(“) nevertheless moves outside the 

boundary we move it to the closest point on the boundary. 

Incidentally, in the implementation the gradient is calculated from the exact 

formula for VF, rather than by numerical differentiation of F. 
We have found this method very robust and efficient, typically minimizing a func- 

tion of N variables in N steps. 

The above procedure is used when all or most of the variables in the design are 

continuous. When many discrete variables are present we use a collection of heuristic 

algorithms (which do however work most of the time). 

Suppose for concreteness that there are k=6 variables, the first four of which 

are continuous and the last two are discrete variables. Let the n points of the 

design be 

a=ar ... &j , &=bl... bs, . . . , c=cl ‘.. c6, 

so that the design vector is x=ab ... c. 

We first discuss the question of choosing the discrete coordinates 

%, a6, b5, 66, . .’ , c5, c6 of the initial design vector x (‘I For this we use one (or more) of . 

three strategies: (i) run sequentially through all possibilities in some fixed order, 

running through them all once before repeating any; (ii) choose them at random from 

the set of all discrete possibilities; (iii) choose them at random from the underlying 

continuous space. If constraints are present, in all three cases only points satisfying the 

constraints are used. Strategies (i) and (ii) are reasonable when the number of 

combinations of discrete variables is not much larger than the number of design 

points, otherwise (iii) appears to be more successful. In the implementation the user 

can specify the strategy to be used, or accept the default strategy (which depends on 

the type of problem). 

Second, in the optimization step, we optimize (using the method described earlier 

in this section) either just the continuous components of x, keeping the dis- 

crete components fixed, or all components, treating the discrete components as 

continuous. 

If the latter strategy is adopted, a final step is needed to convert the discrete 

components (u5, a6, etc.) back to their permitted discrete values. For this discretization 

step we again use one of three methods, replacing each continuous component by: the 

closest discrete value, whichever of the two closest discrete values gives the smallest 

value of F, or whichever of the discrete values gives the smallest value of F. We have 

found the second of the three methods works best, the third being too slow. All three 

methods go through the components of x in order, making a decision and not 

changing it again. These are ‘greedy’ techniques, and do not try to avoid getting 

trapped at local minima. Again the user can, if desired, control which method is used. 

There is a complication to the discretization step, however, for the resulting vector 

x may now violate some constraints involving the discrete variables. If so, we attempt 
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to adjust both the continuous and discrete components of x to correct this. Again 

we use one of three methods, the most successful of which is the following. We 

first find the closest vector x’ (say) to x that satisfies all the constraints, treating 

the discrete components as continuous again. Then we generate a number of 

random legal vectors that satisfy all the constraints and have continuous or 

discrete components as appropriate, and pick the ten of these that are closest to x’. 

In computing their distance to x’, we only consider components that are involved 

in constraints (the others being irrelevant here). From these ten vectors we select 

the one that minimizes F (again using only the components that are involved 

in constraints). This vector is properly discrete and satisfies all the constraints. A 

final optimization is then made with respect to the continuous variables only. 

The modeling region, R, enters the algorithm only through the moment matrix 

M (see (5)). For simple regions (balls, cubes, discrete sets) we use the exact moment 

matrix (cf. Box and Draper, 1959, 1963) otherwise we estimate them by a Monte 

Carlo method. In the present implementation the most general region R is a subset of 

a region SZ(say) which is a product of balls, cubes and discrete sets. The algorithm 

generates random points with a uniform distribution over 52. If the point satisfies all 

the constraints it is accepted and its contributions towards the entries of M are 

recorded. The user has the option of controlling the number of Monte Carlo samples 

used. 

The more samples used, the more accurate is the matrix. It is usually not too serious 

for nontheoretical applications if the matrix is inaccurate - this corresponds to 

a slight change in shape of the region of modeling. 

Two features of the algorithm are worth mentioning. If the user discovers that 

greater accuracy in the moment matrix is called for, further Monte Carlo trials can be 

run, and the results will be automatically combined with the previous estimates. 

Second, the algorithm checks to see if the region R is invariant under changing the 

sign of any coordinates or under permutation of the coordinates and, if so, automati- 

cally makes M invariant under the same symmetries. 

4. Implementation: the program gosset 

The algorithm has been implemented in the C language in a program called gosset. 

The program takes about 10,000 lines of code, runs on a variety of UNIXQbased 

machines, and is distributed in conjunction with the S statistical programming 

language (Becker et al., 1988). Only a brief description is given here; full details can be 

found in the manual of Hardin and Sloane (1992). 

There are three basic steps in using gosset: specifying the design, calculating the 

moment matrix, and searching for the optimal design. 

Step 1. Design speccjication. The design is specified by a series of numbered lines, 

somewhat like a BASIC program. Variables are specified by lines such as 
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10 range a b c 90 120 

20 sphere Temp Zinc Water center 300 20 4 radius .5 

30 discrete KEV 70 90 100 

which indicate that a, b, c are continuous variables ranging from 90 to 120; Temp, 

Zinc and Water belong to a ball centered at [300, 20, 503 of radius 0.5, and KE V is 
a quantitative discrete variable with values 70, 90, 100. Any number of such lines may 

appear. 

To allow a more flexible input format, the program includes its own parser. 

(Programs such as YACC and LEX (see Hume and McIlroy, 1990) have made people 

forget how easy it is to write a parser starting from scratch.) 

Lines lo-30 above are contravariant specifications of scaling, but it is often more 

convenient to use a covariant form. Line 20 for example could equally well be written 

20 sphere 2* (Temp - 300) 2* (Zinc - 20) 2* (Water -4) 

since the default radius is 1 and the default center is the origin. Gosset accepts either 

form, or any combination of them. 

Unprimed variables describe the region of measurement (0) and matching primed 

variables describe the region of modeling (R). The absence of primed variables 

indicates that 0 and R coincide. For example 

10 discrete a b c -1 1 

20 range a’ b’ c’ -1 1 

specifies that a, b, c are 2-level discrete variables taking the values -1 and 1, while the 

model is to be fitted over the whole cube C-1, 11”. If line 20 is omitted, the model 

would be fitted just on the finite set { -1, l}” where the measurements are to be made. 

In this example the numbers -1 and 1 could be omitted, because by default all 

variables have limits -1 and 1, and discrete variables are 2-valued. 

Constraints (which must be linear) are expressed by lines such as 

50 constraint x + 2*y + 3*z = 1 

60 constraint A<B B+0.4<C 

The specification use forces a given point to appear in the design (for example, runs 

made in an earlier experiment, the results of which we do not want to lose). The 

program will then search for the best design that includes these points. For example 

70 use x= .9 y= .3 material =“plastic” 

Inequality constraints may be violated by use points. It may be one of these that 

suggested the wisdom of the constraint! (However, because the program handles 

equality constraints by eliminating variables, use points must satisfy all equality 

constraints.) 
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The model is specified symbolically, by an expression such as 

80 model (1 + a + b +cf2-c-2 

which specifies that the model (see equation (1) above) contains the terms 1, a, b, c, a’, 

b2, ab, ac, bc, but not c ‘. In the model specification, + means ‘add to the list’, - means 

‘take away if it exists’, and multiplication means ‘form all products and keep one 

representative of each type of term’. This is similar to the way models are specified in 

the S language (Chambers and Hastie, 1991). 

Once the design has been specified by a ‘program’ in this way, the program is 

compiled by the command 

compile 

At this point gosset chooses new, internal, variables to parametrize the spaces R and 

0, eliminating each equality constraint by dropping a variable, whose range is then 

expressed by a pair of inequalities, eliminating clearly redundant or unnecessary 

inequalities, and scaling the internal variables so they are in the range -1 to 1. 

Step 2. Moment calculation. The second step is to find the moment matrix M (see 

previous section) by Monte Carlo estimation with a command such as 

moments time = 300 n = 1 O-6 

which would sample until either 300 seconds have elapsed or lo6 samples have been 

taken. If this is a problem where the program can determine M exactly, the effect will 

be as if the user had said 

moments n = 0 

and the exact moments will be used. The moments command makes a header file 

moments.h which is used by the search programs. 

Step 3. Searching for an optimal design. The third step is to search for an optimal 

design, using a command such as 

design type= I runs=24 n =200 

This would instruct the program to search for an Z-optimal design with 24 runs, taking 

200 random designs, optimizing each of them (using the techniques described in 

Section 3), and choosing the best. 

The design command has many options. For example, type= I (or D, or A) 

searches for an I- (or D- or A-) optimal design. Extra = 3 searches for a design with 

three more runs than a minimal design would contain (and relieves the user of the 

necessity of counting the terms in the model!). Start =v.l6.old begins the search at 

a previous design. Tiny = 1 .Oe - 5, steps = 500, time = 300 set limits to the minimal 

step size, the number of steps in the search, and the search time. Processors = 7, on 

a multiprocessor machine, would run seven searches in parallel (with of course 

a dramatic increase in speed). In the design command, the user can, if desired, control 
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the search algorithm by the program = option. Program = r means choose a random 

start, v minimizes I by changing the continuous variables while keeping the discrete 

variables fixed, d is similar but maximizes det M,, vc minimizes I by changing all 

variables, treating discrete variables as if they were continuous, and so on. 

These symbols can be combined using various operators: + means choose the 

best of the left and right sides, A means iterate the left side the number of times 

indicated by the right side, and * is a ‘pipe’ command which passes a design on to 

the next process. 

For example 

design program=(r*v)^50+Iib 

means generate 50 random starts, optimize each, take the best, and compare with the 

best design found in the library. 

If the program =option is not used, gosset uses various default programs, for 

example program=r * v if there are no discrete variables. 

Gosset automatically builds up a library of designs for each problem as it proceeds, 

and, as mentioned in Section 5, contains a very extensive built-in library of designs for 

the ball, cube, etc. 

Gosset does many things simultaneously ~ reads input from the terminal, spins 

off jobs to run the Monte Carlo moment calculation, to compute the Z-value 

of a design, etc., and also checks from time to time to see if these jobs are finished. 

Several difficulties had to be overcome in order to do this in a portable and con- 

venient way. 

For example, one cannot directly use the UNIX wait system call to see if a job is 

finished without being blocked (put to sleep until a termination) if the job is still 

unfinished. Of course this would prevent gosset from responding to the terminal. So 

every wait system call in gosset is preceded by spinning off a dummy job that does 

nothing. Then the wait is sure to complete quickly, because the dummy job terminates 

quickly, and if the job we are really interested in is finished we will be told about that 

too. 

However, some systems always report completed jobs in the reverse order, report- 

ing the most recent jobs first. So gosset runs a test when it starts up, and if it discovers 

that jobs are reported in the reverse order, makes the dummy jobs sleep for one second 

(instead of doing nothing), so they are certain to be reported after other completed 

jobs. 

Gosset also contains its own ‘input daemon’ to make it possible to read input 

without halting the main program. The input daemon program simply waits 

until input lines appear, and then writes them to a disk file. The main program does 

not read input directly (this would halt the main program if no input were present), 

but checks occasionally to see if the disk file has grown, and if so, reads the last 

line there. 
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These features make it possible for a user to monitor the progress of the moments 

or design programs, using watch, status or kill commands, to inspect the best design 

found so far, or to perform other tasks. 

When the design program finishes, the interp command prints out the best design 

found, translating from the internal to the original variables. The commands iv, av 

and dv respectively calculate the I-, A- and D-values of a design. The program 

automatically maintains a library of the best designs found. 

Example. The following is an edited transcript of a session in which gosset was used 

to search for an I-optimal design with three continuous variables x, y, z, each between 

0 and 1, for a full quadratic response surface, with 14 runs (a minimal design would use 

10 runs), taking the best of 25 attempts. 

10 range xyzO1 

20 model (1 +x+y+z)^ 2 

compile 
. . . 

moments n = 1 O-6 
. . . 

design type=1 runs=14 n=25 
. . . 

interp 

0.~000 

0.0000 

0.0000 

0.1707 

0.1707 

0.4742 

0.4742 

0.4742 

0.6630 

0.6630 

1 .oooo 

1 .oooo 

1 .oooo 

1 .oooo 

iv 

0.4065171 

Y Z 

0.0000 0.0000 

0.5000 0.5000 

1 .oooo 1 .oooo 

0.0000 1 .oooo 

1 .oooo 0.0000 

0.5000 0.5000 

0.5000 0.5000 

0.5000 0.5000 

0.0000 0.0000 

1 .oooo 1 .oooo 

0.0000 0.5712 

0.4288 1 .oooo 

0.5712 0.0000 

1 .oooo 0.4288 

Note that this design is symmetric in y and z but not x, and that a point close to the 

center of the cube appears three times in the design. This is one of many situations in 

which a probably optimal design could have been obtained from the built-in library. 
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We have printed the design rounded to four decimal places, but this is also under 

the user’s control. This facility makes it possible to investigate the dependence of 

the I-value on the precision of the design points. One could for example print the 

design with only two decimal places of accuracy, and recalculate the Z-value. (In 

this particular example the I-value increases only by about 0.000004.) 

Further examples are given in the following section and in Hardin and 

Sloane (1992a, b, c, d). The running time of the program, when searching for a 

minimal quadratic design in the k-dimensional ball, grows roughly as k6. 

We have recently extended the program by adding the ability to construct designs 

for situations in which the errors (in equation (l), for example), rather 

independent, have a known correlation matrix. We omit the details. 

5. Examples 

than being 

For over a year we have been running gosset to produce extensive tables of 

conjecturally optimal (or nearly optimal) designs for a variety of classical problems. 

Once found, these designs are incorporated into gosset’s built-in library. The families 

we have focused on are I-optimal designs for linear, quadratic or third-order models, 

in the ball or cube, with continuous or discrete (2- or 3-level) variables. Many 

D-optimal designs have also been computed. 

At the present time the library includes third-order designs for the ball and cube 

with 4-20 runs (in 1 dimension), lo-30 runs (in 2 dimensions), 20-30 runs (in 

3 dimensions), and 3540 runs (in 4 dimensions), all using continuous variables, as 

well as third-order designs for the ball in some higher dimensions. Figure 1 shows the 

conjecturally Z-optimal design with 12 runs in two dimensions. 

0 0 

Fig. 1. Conjecturally I-optimal 12-run design for cubic regression in square. 
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Table 1 

Quadratic response surface designs in gosset library (entry gives number 

of runs) 

Variables Ball Cube 

k (continuous) (continuous) 

1 3-30 3-30 

2 6-21 6-40 

3 10-33 10-30 

4 15-28 15-22 

5 21-33 21-29 

6 28-39 28-36 

1 36-54 36-44 

8 45-70 45-53 

9 55-62 55-63 

10 66-74 66-74 

11 78-86 78-86 

12 91-99 91-98 

13 105S113 105-113 

14 12OG128 120-128 

Discrete Discrete 

(k 1) (0, + 1) 

2-6 3-7 

4-8 6-10 

7-11 10-14 

11-15 15-19 

16-20 21-25 

22-26 28-32 

29-33 36-40 

37-41 45-49 

46-50 55-59 

56-60 66-70 

67-71 78-82 

79-83 91-95 

These designs are very much smaller than the third-order designs available up to 

now (compare Bagchi, 1986; Huda, 1982, 1983; and the references given there). For 

example the smallest four-dimensional design presented in these papers has 60 runs. 

The parameters of the quadratic designs are shown in Table 1. The columns headed 

‘ball’ and ‘cube' refer to designs for the full quadratic model fro +C piXi+CC,,,BijXiXj, 

in which the variables may range continuously over a k-dimensional ball or cube, while in 

the last column the variables are restricted to points with coordinates -1, 0, +l. For these 

three columns the modeling region is the continuous k-dimensional ball or cube. The 

column headed ‘Discrete (fl)’ refers to interaction designs, in which the variables are 

restricted to points with coordinates f 1, the squared terms PiiX’ (i= 1,. . . , k) are omitted 

from the model, and the modeling region is the same discrete set as the measurement 

region. 

The designs mentioned in the table are usually the best of at least 1000 attempts. Some 

of these designs (and the reasons for believing they are close to optimal) are briefly 

discussed in the following subsections. 

We have made similar, although less extensive, tables of conjecturally D-optimal 

quadratic designs, some of which are mentioned in Section 5.2. 

As to linear designs, at present the library contains conjecturally I- and D-optimal 

designs with k+ 1 runs for k variables taking values f 1, for k= 1,2,. . . ,20,23, 
27, 31, . . . ,47. For k= 3 (mod 4) these are Plackett-Burman-Rao designs, while the 

others are discussed in Section 5.3. 

We have also used gosset to construct other classes of designs: mixture designs 

(cf. Cornell, 1990; Vuchkov et al., 1981) block designs, and designs which are intended for 

use in circumstances when one of the measurements may be lost. 
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5.1. Quadratic designs in the ball 

Study of the extensive collection of quadratic designs referred to in Table 1 has led 

us to make a number of observations about the properties of optimal designs in the 

ball. 

Let s(k, n) (resp. 9(k, n)) denote any Z-optimal (resp. D-optimal) design for a full 

quadratic model using n runs in a k-dimensional ball, for k= 1,2,. . . , and 

n >/t (k+ l)(k+2). 

We begin with the observation that there appears to be a unique design 9(3, 14) (apart 

from orthogonal transformations), which consists of three copies of a point distant 

0.003622 from the center of the ball and eleven points on the surface of the 

ball. The precise design is given in Hardin and Sloane (1992~). However, restricting 

S(3, 14) to points at the center and on the surface of the ball incurs a loss of 

only about 0.00006% in Z-efficiency. A similar phenomenon occurs for other values 

of k and n. In contrast, for D-optimal designs, it seems that the only points that 

occur are at the center and on the surface. We formalize these observations as 

follows. 

Conjecture 1. For all k and n, $3 (k, n) contains only points at the center and on the surface 

of the ball. This is not true for 9 (k, n), but restricting Y (k, n) to designs with this property 

incurs a loss in Z-efficiency of less than 0.05%. 

In the rest of this subsection we therefore restrict attention to designs supported only at 

the center and the surface of the ball. For any such design, not necessarily optimal, let 

B and C respectively denote the number of points on the surface (or boundary) and at the 

center, so that n = B + C. It can be shown (see the Appendix to Hardin and Sloane, 1992a) 

that for the purpose of optimizing the placement of the B surface points one can take 

C = 1. The choice of number of center points and the arrangement of the surface points are 

independent problems. 

Let < denote the discrete measure, normalized to have total measure 1, defined 

by the B surface points. If the moments of 5 up through order 4 agree with 

the moments of uniform measure on the surface of the sphere, the B surface points 

are said to form a spherical 4-design (Delsarte et al., 1977; Conway and Sloane, 1988, 

p. 89). 

Theorem 1. Forjixed values of k, n, B and C, both the I- and D-eficiencies are maximized if 

the B surface points can be arranged to form a spherical 4-design. 

The proof for Z-efficiency is given in Hardin and Sloane (1992a), while for 

D-efficiency this follows from the work of Box and Hunter (1957) and Kiefer (1960) (see 

also Farrell et al., 1967; Neumaier and Seidel, 1992). 

If the surface points do form a spherical 4-design, the I- and D-values of the design can 

be calculated analytically, and we obtain the following bounds. The Z-value of 
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a design with n runs, B of which are on the surface and C at the center, is bounded 

below by 

1 k2(kZ+5k+10) 

i (k+2)(k+4) 21 
(13) 

and its D-value is bounded below by 

(14) 

where j?=B/n, y=C/n=l-B. 

One can now select the values of B and y to minimize (13) or (14) for any fixed value of n. 

(Lucas, 1977, has studied how the efficiency of a 4-dimensional design changes as the 

number of center points is varied. Gosset automatically determines the best number of 

center points to use. The number of center points in Z-optimal designs with k d 7 can be 

found in Table 1 of Hardin and Sloane, 1992a.) For large n, (13) implies that in an 

Z-optimal design the fraction of points at the center is 

4kJk2+5k+10-16 

‘=(k-l)(k+2)(k2+4k+8)’ k32. 
(15) 

(14) implies that in a D-optimal design this fraction is 

2 

‘=(k+2)(k+4)’ 
(16) 

which is a theorem of Kiefer (1960). 

By substituting these expressions in (13) and (14) we obtain the limiting values 

1 
(k-l)(k2+4k+8) 

kJk2+5k+10-4 
(17) 

D =(k+l)(k+2)2k”‘+” k+3 

( 1 

2/((k+l)(k+2)) 

co 
k+3 2k (18) 

Using (17) and (18) we can calculate the I- and D-efficiencies of any design via (10). 

The expression (13) was discovered by fitting a formula to the Z-values of the best 

designs. The explanation in terms of spherical 4-designs was found later. One of our 

reasons for believing that many of the designs found by the algorithm are optimal is that, 

in low dimensions k 22, as n increases the Z-values of the best designs fairly rapidly 

converge to the values given by (13). Table 2 for example shows the Z-values of the best 

designs found in 3 and 4 dimensions, for designs using 1 center point and n- 1 surface 

points. The columns headed A give the difference between Z-value and the value given by 

(13) with y= l/n. 

We see from Table 2 that in three dimensions the designs with B= 12,14 and 216 

surface points meet the bound, as do the four-dimensional designs with B 3 20. In five 
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Table 2 

Difference A between I-value of quadratic design in ball (with one center point) and lower 
bound (13) 

Dimension 3 Dimension 4 

n I-value A n I-values A 

10 7.36919794 0.22634080 

11 7.34766849 0.02481135 

12 7.55627269 0.04458438 

13 7.70714286 O.oooooooO 

14 1.92232938 0.01463707 

15 8.11224490 O.oooooooO 
16 8.32382215 0.00382215 

17 8.53035714 O.oooooooO 

18 8.74285714 O.oooooooO 

19 8.95714286 O.oooooooO 

20 9.17293233 O.oooooooO 

21 9.39OOWOO O.oooooooO 

15 1 I .28634552 

16 10.89510993 
17 11.00693715 

18 11.12656017 

19 11.26928079 

20 11.40360533 
21 11.55OOOOOO 

22 11.69841270 

23 11.84848485 

24 12.oooooooo 

25 12.15277778 

26 12.30666667 

0.57205981 

0.05066549 

0.02777048 

0.00891311 

0.01002153 

0.00009656 

O.oooooooO 

O.oooooooO 

O.oooooooO 

O.oooooooO 

O.oooooooO 

O.oooooooO 

dimensions the best designs with B > 29 surface points meet the bound; in six dimensions 

those with B=21,36 and 339; in seven dimensions those with B> 53; and in eight 

dimensions those with Ba69. These designs are usually not unique. 

It follows from a result of Neumaier and Seidel(l992) that a design has a D-value given 

by (14) if and only if the B surface points form a spherical 4-design. (Incidentally, in 

reference to the discussion in Draper and Pukelsheim, 1990, this suggests that the 

difference between the D-value of a design and the minimum of (14) over all choices of 

r=C/n with 1 <C<n is a good measure of the departure of the design from rotat- 

ability.) There is a similar result for Z-values. 

Theorem 2. A quadratic design in the ball has l-value given by (13) if and only if the 

B surface points form a spherical 4-design. 

Thus we obtain spherical 4-designs from all the designs mentioned above. Furthermore, 

the non-existence of designs meeting the bound (13) would imply the nonexistence of the 

corresponding spherical 4-designs. It therefore appears that spherical 4-designs with 

B points exist in three dimensions if and only if B= 12, 14 and 216; in four dimensions if 

and only if B 3 20; in five dimensions if and only if B 3 29; and so on. These conjectures are 

far more precise than our existing knowledge of spherical 4-designs (compare Delsarte et 

al., 1977; Seymour and Zaslavsky, 1984; Bajnok, 1991, 1992; Rabau and Bajnok, 1991). 

They are only conjectures, because in general we have only numerical evidence that the 

designs meet the bound (13). However, in several of these cases we have been able to prove 

that the points found by gosset are indeed spherical 4-designs (see Hardin and Sloane, 

1992d). 
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Table 3 

I- and D-efficiencies of quadratic designs in 3-dimensional ball, comparing best designs found by gosset with 

earlier designs 

gosset I-optimal gosset D-optimal Earlier designs 

n C B I-eff D-eff C B I-efl. D-eff C B I-eff. D-eff. 

10 1 9 (19) 89.6 91.9 I 9 89.6 97.9 1 9 80.7” 86.7” 
11 2 9 (19) 96.4 95.4 1 10 89.8 99.7 1 10 89.ob 99.P 
12 2 10 (20) 99.3 98.0 1 11 87.3 99.4 - ~ ~ ~ 
13 2 11 (21) 98.5 98.4 1 12 85.6’ 99.7’ 1 12 85.6’ 99.1’ 
14 3 ll(21) 98.8 95.1 1 13 83.3 99.3 2 12 98.5’ 99.2’ 
15 3 12’ 99.9 96.4 2 13 91.4 99.3 1 14 99.9’ 99.1d 

Table 4 
Conjecturally I-optimal quadratic designs in 3-dimensional ball (see Table 7) 

Design (19) 9 surface points Design (20) 10 surface points Design (21) 11 surface points 

l.CGQO O.OOOG 0.0000 k[O.O616 -0.53121 0.8450 0.1079 0.4923 kO.8637 
-0.5000 kO.8660 0.0000 k CO.8707 0.37461 0.3186 0.4481 -0.3268 kO.8321 
-0.7018 OSYXKI k0.7123 f 10.7624 -0.63821 0.1065 -0.5166 -0.6771 k 0.5240 

0.3509 kO.6080 kO.7123 f [O. 1673 0.91913 -0.3566 -0.8250 0.2847 kO.4882 
* co.5779 -0.05251 -0.8144 0.9517 0.3071 O.oooO 

0.0000 l.oooO 0.0000 

0.5255 -0.8508 0.0000 

These spherical 4-designs yield rotatable designs when supplemented with the appro- 

priate number of center points. For example, we have discovered an infinite family of 

12-point three-dimensional spherical 4-designs (one of which is the icosahedron), which 

when supplemented by a center point form rotatable (and D-optimal) 13-point designs 

(Hardin and Sloane, 1992d). Similarly, any one of our 1Cpoint designs, supplemented by 

two center points, forms a rotatable (and D-optimal) 16-point design. The design based on 

the icosahedron has of course a long history (Box and Hunter, 1957; Coxeter, 1973), but 

the other designs appear to be new. Bose and Draper (1959) give an infinite family of 

rotatable 16-point designs, but these lie on two concentric spheres, not one, and are 

neither D- nor Z-optimal. The same is true for most of the rotatable designs constructed in 

Box and Draper (1959), Draper (1960) Herzberg (1967). 

Table 3 compares the I- and D-efficiencies of some designs found by our algorithm 

with those of earlier designs. In this table, a and b indicate Roquemore’s designs 310 

and 311B (Roquemore, 1976), c indicates the 12 vertices of the icosahedron, possibly 

supplemented with copies of the center point, and d is the central composite design 

with points, 0, 0,O; ( + 1, 0,. 0); f 3 - ‘/‘, &- 3- l”, + 3 - r/’ (the center and vertices of the - 
rhombic dodecahedron). The designs mentioned in the first column consist of one of 

the sets of points shown in Table 4, supplemented by copies of the center point. To 
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conserve space when specifying the points of a design, parentheses are used to indicate 

that all cyclic shifts of the enclosed coordinates are to be included. For example (abc) is an 

abbreviation for the three points abc, bca, cab. Square brackets have no special meaning 

and are used to group components; thus f [ab] abbreviates the two points + a + b and 

-a -b. 

We see from Table 3 that indeed the conjecturally Z-optimal designs do have the highest 

Z-efficiency, and similarly for the conjecturally D-optimal designs (whose coordinates are 

not shown). It is worth remarking that for 13 points the icosahedron plus center is not 

I-optimal (although it appears to be D-optimal), while for 14 points the icosahedron plus 

two center points is neither I- nor D-optimal. The 15point central composite design 

mentioned above is also neither I- nor D-optimal, nor is Doehlert’s (1970) 13-point 

uniform shell design (not shown in the table), which consists of the center and vertices of 

a cuboctahedron, and has I- and D-efficiencies of only 82.6 and 97.0%. 

For larger numbers of runs in three dimensions, the best designs found by gosset 

appear to be rotatable and Z-optimal for all n > 20, and rotatable and D-optimal for all 

n>18. 

In four dimensions we have computed designs with from 15 to 28 runs. Roquemore 

(1976) gives three designs with 16 runs, the best of which (416C) has Z-efficiency 90.3% and 

D-efficiency 96.9%. Our conjecturally D-optimal 16-point design has I-efficiency 92.3% 

and D-efficiency 99.7%, and our conjecturally Z-optimal design has I-efficiency 94.3% 

and D-efficiency 99.1%. The latter design has a simple description by pairs of complex 

numbers. It consists of the points [0, 01, [o’, 01, [0, 07, 2-112 [--or, -o’], where 

o=e21di3, and r, s~(0, 1,2}. 

For 27 points the program finds the Box-Behnken (1960b) design, which consists of 

three center points together with the vertices of the 24-1~11 (Conway and Sloane, 1988; 

Coxeter, 1973), and is I-optimal (although not unique). 

Roquemore’s six-dimensional design 628A, although it is not identified as such in 

Roquemore (1976), consists of a center point plus the well-known 27-point spherical 

4-design associated with the Schllfli polytope (see Delsarte et al., 1977; Conway and 

Sloane, 1991). It is therefore both I- and D-optimal. This design was also found by gosset. 

Box and Behnken (1960a, b), Crosier (1991) Doehlert (1970) Doehlert and Klee 

(1972) and others have given quadratic designs in higher-dimensional spheres, but 

these all contain many more points than ours. 

5.2. Quadratic designs in the cube 

In this section we discuss I- and D-optimal designs for quadratic models in the 

k-dimensional cube. Table 1 shows the parameters of the Z-optimal designs we have 

considered. 
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We first discuss the two-dimensional problem. Box and Draper (1971) used a hill- 

climbing method to search for D-optimal quadratic designs in the square with from 

6 to 18 runs, and Haines (1987) used simulated annealing to search for D-, I- and 

G-optimal designs in some low-dimensional problems. In particular, she found conjec- 

turally optimal quadratic designs in the square with from 6 to 9 runs. Our program 

has confirmed the I- and D-optimality of the designs found in these two papers. 

(Although many of the designs presented in Haines (1987) and Box and Draper (1971) 

are described as being respectively I- and D-optimal, we do not believe this optimality 

has been rigorously established.) 

For three dimensions there are a number of papers dealing with D-optimal 3-level 

designs (see Atkinson, 1973; Mitchell and Bayne, 1976, 1978; Galil and Kiefer, 1977b, 

1980b; Welch, 1982; Meyer and Nachtsheim, 1988). We have used gosset to search for 

I- and D-optimal designs, both with continuous and with 3-level coordinates, and the 

designs with from 10 to 20 runs are summarized in Table 5. Four examples of the 

I-optimal continuous designs are shown in Table 6. 

For the D-opimal 3-level designs our results agree with the above references. 

Comparing Tables 3 and 5 we see that in the cube there is a much greater difference 

between I- and D-optimal designs than in the ball. This is presumably because of the 

tendency for D-optimal designs to contain more points on the boundary and fewer at 

the center. We also see from Table 5 that whereas for D-optimality it makes little 

difference whether we use 3-level or continuous coordinates, for I-optimality there is 

a considerable differnce. With 12 runs for example we gain 8% in I-efficiency by using 

continuous coordinates. Furthermore, although the l-optimal designs have reason- 

ably high D-efficiencies, the Z-efficiencies of the D-optimal designs, especially the 

3-level ones, are poor. 

Table 5 

Comparison of I- and D-efficiencies of best quadratic designs in 3-dimensional cube found by gosset (cts. 

means coordinates in range [- 1, 11; 3-lev. means coordinates are 0, k 1) 

I-opt. cts. I-opt. 3-lev. D-opt. cts. D-opt. 3-lev. 

n Design I-eff. D-eff. I-eff. D-eff. I-eff. D-eff. I-eff. D-eff. 

10 (22) 76.9 87.1 71.2 85.2 74.5 89.3 40.4 86.3 

11 (23) 87.2 86.3 79.4 82.0 61.9 94.4 42.6 94.4 

12 (24) 89.8 83.1 81.6 86.0 63.2 94.8 44.1 94.8 
13 90.4 84.4 85.8 77.1 12.5 97.8 51.2 97.1 

14 (25) 92.7 82.1 89.1 83.4 70.7 97.6 53.0 97.6 
15 95.7 94.2 95.7 94.2 69.5 97.0 50.5 96.8 
16 96.8 90.6 96.8 90.6 68.8 96.8 50.8 96.6 
17 96.4 89.0 96.3 89.0 66.1 96.9 50.1 96.7 
18 97.5 89.7 97.3 89.6 70.5 97.1 49.6 97.0 
19 97.8 86.7 97.5 86.7 64.7 97.7 50.1 91.6 
20 98.9 88.8 98.9 88.8 62.8 97.9 51.5 97.8 
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Table 6 

Conjecturally I-optimal quadratic designs in 3-dimensional cube (see Table 5) 

Design (22), 10 points Design (23) 11 points 

1 .oooo 1.0000 1.0000 1.0000 1.0000 1.0000 

(0.9605 -0.1025 -0.1025) (1.0000 -0.1905 -0.1905) 

(0.2553 -1.0000 - 1.0000) (0.2349 -1.0000 - 1.0000) 

( - 1 .oooo 1 .oOOO 1.0000) 0.0589 0.0589 0.0589 

(-1.0000 1 .oooo 1.0000) 

Design (24), 12 points Design (25), 14 points 

1 .oOQo 1 .oooo 1 .oOOo + [l.OOOO 1 .OOOO] -0.6585 

(I.0000 -0.3119 -0.3119) ~(1.0000 0.1423) 1 .oOQo 

(0.1685 -1.0000 - 1 .OOcO) (1.0000 - 1 .OOOO) 0.3261 

0.0925 0.0925 0.0925 twice (1.0000 - 1 .OOOO) - 1 .oooo 

(-1.0000 1 .oooo 1 .OOOO) 0.0000 0.0000 -0.0516 3 times 

0.0000 0.0006 - 1.0000 

Table I 

Comparison of minimal quadratic designs in cube, based on Table 8 of Draper and Lin (1990). Entry gives 

reciprocal of D-value 

Draper and Lucas Notz Mitchell and Box and Rechtschaffner New 

k Lin (1988) (1974) (1982) Bayne (1976) Draper (1976) (1967) designs 

3 0.303 0.152 0.400 0.410 0.423 0.400 0.423 

4 0.308 0.096 0.392 0.425 0.423 0.392 0.432 

5 0.241 0.066 0.459 0.456 0.374 0.450 0.467 

6 0.263 0.048 0.446 0.317 0.428 0.464 

7 0.196 0.036 0.227 0.383 0.458 

8 0.321 0.028 0.193 0.336 0.455 

9 0.200 0.023 0.167 0.293 0.460 

10 0.165 0.018 0.146 0.255 0.465 

In dimensions 2 through 10, a number of authors have attempted to find D-optimal 

designs with the minimal number of runs in a cube. Draper and Lin (1990) give a table 

comparing the D-values of designs found by Box and Draper (1974), Draper and Lin 

(1988), Lucas (1974) Mitchell and Bayne (1976) Notz (1982) and Rechtschaffner 

(1967). We have reproduced this as Table 7, supplemented with an additional column 

showing the D-values of the designs found by gosset. In dimensions ka4 the new 

designs are better. The entries give the reciprocals of the D-values, numbers which are 

to be made as large as possible. 

For four dimensions, Meyer and Nachtsheim (1988) reported that their simulated 

annealing algorithm found a 17-run design with det X/X=1.4867. lOi when the 

coordinates were restricted to three levels, but that they could only obtain 

4.1296*10” when the points ranged over the whole cube. Gosset does not suffer from 
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this weakness, and found an even better continuous design, with 

det X’X= 1.6863. 1013. 

5.3. Linear designs in the cube 

There is a substantial body of work dealing with the construction of designs 

for linear regression in the k-dimensional cube (see for example Chadjipantelis 

et al., 1987; Ehlich, 1964a, b; Ehlichj’and Zeller, 1962; Galil, 1985; Galil and Kiefer, 

1980a, b,c, 1982a, b; Mitchell, 1974a, b; Moyssiadis and Kounias, 1982; Sathe and 

Shenoy, 1989, 1991; Smith, 1988; Williamson, 1946; and the references therein). 

The problem is to construct a design for the model /$, +fllxl + ... + /$x~, using 

n > k+ 1 points in the unit k-dimensional cube, either restricting the points to 

the vertices, or allowing them to range over the whole cube. For brevity we shall 

concentrate on the case of minimal (or saturated) designs, with n = k + 1. Note that 

in the case where both the measurement and modeling regions consist of the set of 

vertices of the cube, the moment matrix A4 is the identity matrix, and A- and 

I-optimality coincide. 

The problem of finding a minimal D-optimal design in which the points are 

restricted to the vertices of the cube can be rephrased as follows. Determine the value 

of g(k+ l), the maximal determinant of any (k+ 1) x (k+ 1) matrix with entries +_ 1. 

Many optimal designs are known for this problem, and these provide an opportunity 

to evaluate the performance of our program in the case where all variables are discrete 

(which is the most difficult for the algorithm). 

We find that although the algorithm performs well up to about 20 dimensions, 

finding the best designs known, in higher dimensions it does not perform as well as 

programs such as that of Smith (1988) which are designed specifically for this problem. 

Table 8 shows best lower bounds on g(k+ 1) presently known. In this 

table, * indicates that the entry is known to be the exact value of g(k+ l), H 

indicates a Hadamard matrix, G that gosset was able to find this design, Ch. et al. = 

Chadjipantelis et al. (1987), E.(a) = Ehlich (1964a), E.(b) = Ehlich (1964b), E.Z. = Ehlich 

and Zeller (1962) G.K. = Galil and Kiefer (1980a), M.K. = Moyssiadis and Kounias 

(1982), S=Smith (1988), W. =Williamson (1946). 

We also carried out a search for Z-optimal (or equivalently A-optimal) designs with 

the same range of values of k. In each case we were able to find an Z-optimal design 

which was also D-optimal, and we conjecture that this will always be true for minimal 

designs. The converse is not always true. For k= 10 for example there are D-optimal 

designs which are not Z-optimal (cf. Galil and Kiefer, 1980a, p. 12971). The Z-values of 

these designs, normalized by division by k + 1, are shown in the last column of Table 8. 

For some small values of k the designs change dramatically when the points are not 

restricted to the vertices of the cube (and the measurement and modeling regions 
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Table 8 
Best lower bound on maximal determinant of k l-matrix of order k + 1; 
and normalized I-value of conjecturally I-optimal design 

k g(k+ 1) Notes I/F+ 1) 

1 2 *, G 
2 4 *, G 
3 16 +, H, G 
4 48 *, E.(a), E.(b), G 
5 160 *, G 
6 576 *, W, G 
7 4096 *, H, G 
8 14336 *, E.Z., G 
9 73728 *, E.(a), E.(b), G 

10 327680 *, E.Z., G.K., G 
11 2985984 *> H, G 
12 14929920 *, E.(a), E.(b), G 
13 77635584 *, E.(a), E.(b), G 
14 2418037760 S., G 
15 4294967296 *, H, G 
16 21474836480 *, M.K., G 
17 146028888064 *, E.(a), E.(b), G 
18 3894426939392 *, S. G 
19 10240000000000 *, H, G 
20 59392000000000 *, Ch. et al., G 
21 2377073157799936 S. 
22 22626567700217856 S. 
23 36520347436056576 *, H 

1 
1.5 
1 
1.11111111 
1.2 
1.27777778 

1.14795918 
1.11111111 
1.165 
1 
1.04 
1.07692308 
1.11142857 
1 
1.06 
1.05882353 
1.09527929 
1 
1.04447087 

I 

consist of the whole cube). For example, the following are conjecturally Z-optimal 

designs for the cases k = 2 and 5: 

where +=+l, -= -1, a=0.4391, b= -0.2417. Their Z-values are respectively 

2 and 3.1986, compared with 2.5 and 3.2 for the *l-designs mentioned in 

Table 8. 

As a final example, we consider the problem of finding a D-optimal design for the 

case k = 15, n = 19, which Galil (1985) mentions as unsolved. Equivalently, we wish to 
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Table 9 
19 x 16 matrix X found by gosset, for which def X’X=2545*73 

l-l -1 -1 -1 -1 1 -1 1 1 -1 -1 1 1 1 -1 
l-l -1 -1 -1 1 1 1 -1 -1 -1 -1 1 -1 1 1 
l-l -1 1 -1 1 1 1 -1 -1 1 -1 -1 1 1 1 
l-l -1 1 1 -1 -1 1 1 1 1 1 1 1 -1 1 
l-l -1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 
l-l 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 1 
l-l 1 -1 1 -1 1 -1 -1 1 1 1 -1 -1 1 1 
l-l 1 -1 1 1 -1 -1 -1 -1 1 -1 1 1 -1 -1 
l-l 1 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 -1 
1 1 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 1 
1 1 -1 -1 -1 1 -1 1 -1 1 1 1 1 -1 1 -1 
1 1 -1 -1 1 -1 1 1 -1 -1 -1 1 -1 1 -1 -1 
1 1 -1 1 -1 1 1 1 -1 1 1 1 -1 1 -1 -1 
1 1 -1 1 1 1 1 -1 -1 1 -1 -1 1 -1 -1 1 
1 1 1 -1 1 1 -1 1 1 1 -1 -1 -1 1 1 1 
1 1 1 1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 
1 1 1 1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 
1 1 1 1 -1 1 1 -1 1 1 -1 1 -1 1 1 1 
1 1 1 1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 

find a 19 x 16 f l-matrix X for which det X’X is maximal. The gosset program is 

10 discrete xl x2 ... xl 5 

20 model 1 +x1 +x2+ ... +x1 5 

design runs = 19 

and the matrix shown in Table 9 is the best of 4000 tries. It has 

det X’X= 154473467218808012800=2545273. 

5.4. A 'twisted' fractional factorial design 

In the past year there have been numerous industrial and academic applications of 

gosset. There is space for only one example here. This problem arose in studying 

VLSI wafers, in an experiment with five quantitative discrete variables A, B, C, D, 

E taking the values -1 and 1. The experimenter had manufactured 14 wafers, in which 

A, B, C were set to 1, 1, 1 (twice), 1, 1, -1 (twice), and so on, excluding -1, -1, -1, but 

in which the values of D and E were not yet chosen. The response surface model 

involved main effects and all interactions except those mentioning C. The problem 

was to determine what settings for D and E should be used on these same 14 wafers. 

We ran gosset with the program 
. . 

10 discreteABCDE-1 1 

20 constraint A+B+C> -2.5 

30 model l+A+B+C+D+E+A*B+A*D+A*E+B*D+B*E+D*E 
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where line 20 is used to exclude the values A = B = C = - 1, and asked for a design with 

14 runs, guessing that this would produce a design meeting the requirements. It did. In 

fact we obtained the same design whether we specified I-, D- or A-optimality. 

Examination of the computer output showed that this presumably I-, D- and A- 

optimal design can be regarded as a ‘twisted’ fractional factorial design with the 

following definition: take all vectors A, B, C, D, E which satisfy ABCDE= -1, except 

that if A = B = - 1, C = 1 the rule is ABCDE = 1, and then discard the two vectors with 

A=B= C= - 1. Note that in the statement of the problem C is treated differently 

from A and B, and the solution shows the same asymmetry. This experiment has now 

been completed. 

We are grateful to our colleagues L. Denby, A.E. Freeny and J.M. Landwehr for 

telling us about this problem. 

5.5. Designs for extrapolation 

There have been a number of papers on designs for extrapolation, but these deal 

mostly with the asymptotic theory (Galil and Kiefer, 1979; Hoel, 1965; Hoe1 and 

Levine, 1964; Kiefer and Wolfowitz, 1964a, b, 1965). In this section we give some 

examples of minimal or close to minimal designs. 

These designs have not yet found application, but are included to illustrate the use 

of gosset in situations in which the regions 0 and R are quite distinct, even disjoint. 

Such designs must be used with care, for now it is harder to justify a polynomial 

model. However, they illustrate one of the program’s more unusual features, the 

technique could be modified to accommodate other models (it would be easy to 

modify gosset to allow rational or trigonometric models), and the first of these 

designs could arise in several situations. 

The first example asks for a design which will fit a quadratic response surface to the 

radiation level in a room with coordinates -1 <x< 1, O<y< 1, O<zb 1, with the 

constraint that because of the high radiation level in the left half of the room, 

measurements can only be made in the right half, i.e., in the region 0 d x, y, z < 1. The 

gosset program is 

10 rangexyzO1 

20 range x’ -1 1 

30 range y’ 2’ 0 1 

40 model (1 +x’+y’+z’)^2 

An example of a conjecturally I-optimal design with 13 runs is shown in 

Table 10. 

In another setting for this example, the x-coordinate is time, and we wish to 

make measurements over a 24-hour period in order to model a response over 

48 hours. 
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Table 10 Table 11 

A 13-run design for fitting a quadratic 

model in a room from measurements made 

only in one half 

Designs for extrapolation of cubic polynomial at a single 

point (n is a number of observations) 

n I-eff 

0.0000 0.0000 
0.0000 (0.0323 

0.0000 0.5002 

0.0000 0.8 162 

0.5124 1 .oOOo 

0.5132 (0.0000 

0.5187 (0.0000 

1 .oooo 0.0000 

1 .oooo (0.3695 

0.0000 
1 .OOOO) 

0.5002 
0.8162 
1 .ooOO 

0.4361) 

0.8448) 

0.0000 

0.9636) 

Design 

4 87.51 -1, -0.5798, 0.4689, 1 

5 91.81 -1, - 0.5367, 0.47642, 1 

6 94.07 -1, -0.5291, 0.5213’, 1’ 

10 99.50 -1, -0.49792, o.51194. l3 

20 99.32 - 12, -0.5025’, 0.4854*, I 5 
52 99.29 - 15, -0.499413, 0.4861 ‘I, 1’3 

Many variations of these designs are possible. An extreme example might arise in 

astronomy: find an I-optimal design for modeling a quadratic response on the moon 

from measurements made on or in the earth. The gosset program is 

10 sphere x y z radius 4000 

20 sphere x’ y’ z’ radius 1000 center 240000 0 0 

30 model (1 +x’+y’+z’)*2 

and a lo-run (minimal) design consists of the points [3997, -154.0,37.5], [3992, 110.0, 

230.71, [3991, 42.0, -268.11, [159, 158.9, -28.01, [154, -202.4, 47.73, [151, -107.2, 

36.11, [136, 135.9, 200.31, [133, 16.4, -259.41, C-3997, 164.0, -7.01, C-3997, -164.9, 

5.81. 

Finally, we consider a l-dimensional extrapolation problem used as an illustration 

by Hoe1 and Levine (1964): construct a design on C-1, l] to estimate a cubic 

polynomial at the single point 2. It is shown in Hoe1 and Levine (1964) that the 

Z-optimal design places respectively 5152, 12/52, 20152 and 15152 of the observations 

at the points -1, - f, 1 and 1. We used the gosset program 

10 range x 

20 range x’ 1.99999 2.00001 

30 model (1 +x)*3 

to produce comparable designs, some of which are shown in Table 11. 

We see that efficient designs are obtained even with small numbers of obervations. 

Incidentally, although in the asymptotic theory Hoe1 and Levine (1964) show that the 

same observation points can be used for extrapolation to any single point, our 

program shows that in the finite theory this is not true. 

The last two lines of the table show one of our algorithm’s limitations: because of 

the way we move the design points, they all attempt to move to the most favorable 

position, which tends to make them fall into ‘bunches’. The points in a bunch then stay 
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together throughout the iteration process. If there are a large number of points, many 

more than in a minimal design, it may happen (as we have seen here) that there is 

a vanishingly small chance of stumbling on the optimal distribution into bunches. 

This does not occur with smaller numbers of observations, because then every 

distribution has a significant probability of being tried. 
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